Cr 3 цвет. Соединения хрома. Оксиды, гидроксиды. Хроматы. Дихроматы. Окислительные свойства соединений хрома (VI). Получение и применение


И жиров.

Ученые утверждают, что на уровень холестерина влияет хром. Элемент считается биогенным, то есть, необходим организму, не только человеческому, но и всех млекопитающих.

При недостатке хрома замедляется их рост и «подскакивает» холестерин. Норма – 6 миллиграммов хрома от общей массы человека.

Ионы вещества есть во всех тканях тела. В день должны поступать 9 микрограммов.

Взять их можно из морепродуктов, перловой крупы, свеклы, печени и мяса утки. Пока закупаете продукты, расскажем о других назначениях и свойствах хрома.

Свойства хрома

Хром – химический элемент , относящийся к металлам. Цвет у вещества серебристо-голубой.

В элемент стоит под 24-ым порядковым, или, как еще говорят, атомным номером.

Число указывает на количество протонов в ядре. Что же касается электронов, вращающихся близ него, у них есть особое свойство – проваливаться.

Это значит, что одна или 2-е частицы могут перейти с одного подуровня на другой.

В итоге, 24-ый элемент способен наполовину заполнить 3-ий подуровень. Получается устойчивая электронная конфигурация.

Провал электронов – явление редкое. Кроме хрома, вспоминаются, пожалуй, лишь , , и .

Как и 24-ое вещество, они химически малоактивно. Не затем атом приходит к устойчивому состоянию, чтобы вступать в реакцию со всеми подряд.

При обычных условиях хром – элемент таблицы Менделеева , «расшевелить» который удается лишь .

Последний, является антиподом 24-го вещества, максимально активен. В ходе реакции образуется фторид хрома .

Элемент, свойства которого обсуждаются, не окисляется, не боится влаги и тугоплавок.

Последняя характеристика «оттягивает» реакции, возможные при нагреве. Так, взаимодействие с парами воды запускается лишь при 600-от градусах Цельсия.

Получается оксид хрома. Запускается и реакция с , дающая нитрид 24-го элемента.

При 600-от градусах, так же, возможны несколько соединений с и образование сульфида.

Если довести температуру до 2000, хром воспламенится при контакте с кислородом. Итогом горения станет окись темно-зеленого цвета.

Этот осадок легко реагирует с растворами и кислот. Итогом взаимодействия становятся хлорид и сульфид хрома. Все соединения 24-го вещества, как правило, ярко окрашены.

В чистом виде основная характеристика элемента хрома – токсичность. Пыль металла раздражает легочные ткани.

Могут проявиться дерматиты, то есть, заболевания аллергического характера. Соответственно, норму хрома для организма лучше не превышать.

Есть норма и по содержанию 24-го элемента в воздухе. На кубический метр атмосферы должны приходиться 0,0015 миллиграммов. Превышение стандарта считается загрязнением.

У металлического хрома высокая плотность – более 7 граммов на кубический сантиметр. Это значит, вещество довольно тяжелое.

Металла тоже довольно высока. Она зависит от от температуры электролита и плотности тока. У грибков и плесени это, видимо, вызывает уважение.

Если пропитать хромовым составом древесину, микроорганизмы не возьмутся разрушать ее. Этим пользуются строители.

Их устраивает и то, что обработанное дерево хуже горит, ведь хром – тугоплавкий металл. Как и где еще его можно применить, расскажем далее.

Применение хрома

Хром – легирующий элемент при выплавке . Помните, что в обычных условиях 24-ый металл не окисляется, не ржавеет?

Основа сталей – . Оно такими свойствами похвастаться не может. Поэтому и добавляют хром, повышающий стойкость к коррозии.

К тому же, добавка 24-го вещества снижает точку критической скорости охлаждения.

Силикотермический хром применяют для выплавки . Это дуэт 24-го элемента с никелем.

В качестве добавок идут , кремний, . Никель отвечает за пластичность , а хром – за его стойкость к окислению и твердость.

Соединяют хром и с . Получается сверхтвердый стеллит. Добавки к нему – молибден и .

Состав дорогостоящий, но необходим для наплавки машинных деталей с целью увеличения их износостойкости. Напыляют стеллит и на рабочие станки, .

В декоративных коррозийностойких покрытиях используют, как правило, соединения хрома .

Пригождается яркая гамма их цветов. В металлокерамике красочность не нужна, поэтому, применяют порошковый хром. Он добавляется, к примеру, для прочности в нижний слой коронок для .

Формула хрома – составная часть . Это минерал из группы , но привычного цвета у него нет.

Уваровит – камень, и таким его делает именно хром. Не секрет, что используются .

Зеленая разновидность камня – не исключение, причем, ценится выше красной, поскольку редка. Еще, уваровит чуть стандартных .

Это тоже плюс, ведь минеральные вставки сложнее поцарапать. Гранят камень фасетно, то есть, формируя углы, что увеличивает игру света.

Добыча хрома

Добывать хром из минералов невыгодно. Большинство с 24-ым элементом , используются целиком.

К тому же, содержание хрома в , как правило, невелико. Вещество извлекают, в основанном, из руд.

С одной из них связано открытие хрома. Его нашли в Сибири. В 18-ом веке там нашли крокоит. Это свинцовая руда красного цвета.

Ее основа – , второй элемент – хром. Обнаружить его, удалось немецкому химику по фамилии Леман.

На момент открытия крокоита он гостил в Петербурге, где и провел опыты. Теперь, 24-ый элемент получают путем электролиза концентрированных водных растворов оксида хрома.

Возможен, так же, электролиз сульфата. Это 2 пути получения наиболее чистого хрома. Молекула оксида или сульфата разрушается в тигле, где исходные соединения поджигают.

24-ый элемент отделяется, остальное уходит в шлак. Остается выплавить хром в дуговой . Так извлекают наиболее чистый металл.

Есть и другие пути получения элемента хрома , к примеру, восстановление его оксида кремнием.

Но, такой способ дает металл с большим количеством примесей и, к тому же, более затратен, чем электролиз.

Цена хрома

В 2016-ом году стоимость хрома, пока, снижается. Январь начался с 7450-ти долларов за тонну.

К середине лета просят лишь 7100 условных единиц за 1000 килограммов металла. Данные предоставлены Infogeo.ru.

То есть, рассмотрены российские цены. На мировом стоимость хрома доходила почти до 9000 долларов за тонну.

Наименьшая же отметка лета отличается от российской всего на 25 долларов в сторону возрастания.

Если рассматривается не промышленная сфера, к примеру, металлургия, а польза хрома для организма , можно изучить предложения аптек.

Так, «Пиколинат» 24-го вещества стоит около 200-от рублей. За «Картнитин хром Форте» просят 320 рублей. Это ценник за упаковку из 30-ти таблеток.

Восполнить дефицит 24-го элемента может и «Турамин Хром». Его стоимость – 136 рублей.

Хром, кстати, входит в состав тестов на выявление наркотиков, в частности, марихуаны. Один тест стоит 40-45 рублей.

Статья посвящена элементу № 24 таблицы Менделеева — хрому, истории его открытия и распространения в природе, строению его атома, химическим свойствам и соединениям, тому, как его получает и зачем он нам нужен. Среднее содержание хрома в земной коре не велико 0,0083% . Этот элемент, вероятно, более характерен для мантии Земли.

Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10-2%, в кислых — 2,5·10-3%, в осадочных породах (песчаниках) — 3,5·10-3%, глинистых сланцах — 9·10-3% . Хром — сравнительно слабый водный мигрант: содержание Хрома в морской воде 0,00005 мг/л, в поверхностной воде -0,0015 мг/л.
В целом хром — металл глубинных зон Земли.

Сегодня общий объем потребления чистого хрома (не менее 99% Cr) составляет около 15 тысяч тонн, из них около трети приходится на электролитический хром. Мировым лидером в производстве высокочистого хрома является английская фирма Bell Metals. Первое место по объемам потребления занимают США (50%), второе – страны Европы (25%), третье – Япония. Рынок металлического хрома довольно нестабилен, и цены на металл колеблются в широком диапазоне.

1. ХРОМ КАК ХИМИЧЕСКИЙ ЭЛЕМЕНТ

Хром – (Chromium) Cr, химический элемент 6(VIb) группы Периодической системы. Атомный номер 24, атомная масса 51,996. Известно 24 изотопа хрома с 42 Cr по 66 Cr. Изотопы 52 Cr, 53 Cr, 54 Cr являются стабильными. Изотопный состав природного хрома: 50 Cr (период полураспада 1,8·10 17 лет) – 4,345%, 52 Cr – 83,489%, 53 Cr – 9,501%, 54 Cr – 2,365%. Основные степени окисления +3 и +6.

В 1761 профессор химии Петербургского университета Иоганн Готтлоб Леман (Johann Gottlob Lehmann) у восточного подножия Уральских гор на Березовском руднике обнаружил замечательный красный минерал, который при измельчении в порошок давал яркую желтую окраску. В 1766 Леман привез образцы минерала в Петербург. Обработав кристаллы соляной кислотой, он получил белый осадок, в котором обнаружил свинец. Леман назвал минерал сибирским красным свинцом (plomb rouge de Sibérie), теперь известно, что это был крокоит (от греческого «krokos» – шафран) – природный хромат свинца PbCrO 4 .

Немецкий путешественник и естествоиспытатель Петер Симон Паллас (Peter Simon Pallas) (1741–1811) возглавил экспедицию Петербургской Академии наук в центральные регионы России и в 1770 побывал на Южном и Среднем Урале, в том числе на Березовском руднике и, подобно Леману, заинтересовался крокоитом. Паллас писал: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Несмотря на редкость и трудность доставки крокоита с Березовского рудника в Европу (на это уходило почти два года), использование минерала в качестве красящего вещества было оценено по достоинству. В Лондоне и Париже конца 17 в. все знатные особы ездили на каретах, покрашенных мелко растертым крокоитом, кроме того, лучшие образцы сибирского красного свинца пополняли коллекции многих минералогических кабинетов Европы.

В 1796 образец крокоита попал к профессору химии Парижской минералогической школы Никола Луи Вокелену (Nicolas-Louis Vauquelin) (1763–1829), который проанализировал минерал, но не нашел в нем ничего кроме оксидов свинца, железа и алюминия. Продолжая исследования сибирского красного свинца, Вокелен прокипятил минерал с раствором поташа и после отделения белого осадка карбоната свинца получил желтый раствор неизвестной соли. При обработке его солью свинца образовывался желтый осадок, солью ртути – красный, а при добавлении хлорида олова раствор становился зеленым. Разлагая крокоит минеральными кислотами, он получил раствор «кислоты красного свинца», упаривание которой давало рубиново-красные кристаллы (сейчас понятно, что это был хромовый ангидрид). Прокалив их с углем в графитовом тигле, обнаружил после реакции множество сросшихся серых игольчатых кристаллов неизвестного до того времени металла. Вокелен констатировал высокую тугоплавкость металла и его устойчивость по отношению к кислотам.

Вокелен назвал новый элемент хромом (от греческого  – цвет, окраска) ввиду множества образуемых им разноцветных соединений. На основании своих исследований Вокелен впервые констатировал, что изумрудная окраска некоторых драгоценных камней объясняется примесью в них соединений хрома. Например, природный смарагд представляет собой окрашенный в глубокий зеленый цвет берилл, в котором алюминий частично замещен хромом.

Скорее всего, Вокеленом был получен не чистый металл, а его карбиды, о чем свидетельствует игольчатая форма полученных кристаллов, но Парижская Академия наук тем не менее зарегистрировала открытие нового элемента, и сейчас Вокелен справедливо считается первооткрывателем элемента № 24.

В 1798 Ловиц и Клапрот (Klaproth) независимо от Вокелена обнаружили хром в образце тяжелого черного минерала (это был хромит FeCr 2 O 4), найденного на Урале, но значительно севернее Березовского месторождения. В 1799 Ф.Тассерт (Tassaert) обнаружил новый элемент в том же минерале, найденном на юго-востоке Франции. Считается, что именно Тассерту впервые удалось получить относительно чистый металлический хром.

2. ХРОМ В ПРИРОДЕ И ЕГО ПРОМЫШЛЕННОЕ ИЗВЛЕЧЕНИЕ

Хром – довольно распространенный элемент на Земле. Его кларк (среднее содержание в земной коре) коре составляет 8,3·10 –3 %. Хром никогда не встречается в свободном состоянии. В хромовых рудах практическое значение имеет только хромит FeCr 2 O 4 , относящийся к шпинелям – изоморфным минералам кубической системы с общей формулой МО·Ме 2 О 3 , где М – ион двухвалентного металла, а Ме – ион трехвалентного металла. Шпинели могут образовывать друг с другом твердые растворы, поэтому в природе отдельно или в качестве примесей к хромиту встречаются также магнохромит (Mg,Fe)Cr 2 O 4 , алюмохромит Fe(Cr,Al) 2 O 4 , хромпикотит (Mg,Fe)(Cr,Al) 2 O 4 – все они относятся к классу хромшпинелидов. Помимо шпинелидов, хром встречается во многих значительно менее распространенных минералах, например, меланохроите 3PbO·2Cr 2 O 3 , вокелените 2(Pb,Cu)CrO 4 (Pb,Cu) 3 (PO 4) 2 , тарапакаите K 2 CrO 4 , дитцеите CaIO 3 ·CaCrO 4 и других.

Хромиты окрашены в темный или почти черный цвет, имеют металлический блеск и обычно залегают в виде сплошных массивов. Месторождения хромита имеют магматическое происхождение. Его выявленные ресурсы оценены в 47 странах мира и составляют 15 миллиардов тонн. Первое место по запасам хромита занимает ЮАР (76% от разведанных мировых запасов), где наибольшее значение имеет группа Бушвельдских месторождений, содержание хромовой руды в которых составляет 1 миллиард тонн. Второе место в мире по ресурсам хромита занимает Казахстан (9% от мировых запасов), хромовые руды там очень высокого качества. Все ресурсы хромита в Казахстане сосредоточены в Актюбинской области (Кемпирсайский массив с запасами 300 млн. тонн); месторождения разрабатываются с конца 1930-х. Третье место занимает Зимбабве (6% от мировых запасов). Кроме того, значительными ресурсами хромита обладают США, Индия, Филиппины, Турция, Мадагаскар, Бразилия. В России довольно крупные залежи хромита встречаются на Урале (Сарановское, Верблюжьегорское, Алапаевское, Монетная дача, Халиловское и другие месторождения).

В начале 19 в. основным источником хромита являлись уральские месторождения, но в 1827 американец Исаак Тисон (Isaac Tyson) обнаружил крупное месторождение хромовой руды на границе Мериленда и Пенсильвании, став монополистом в области добычи на долгие годы. В 1848 залежи хромита высокого качества были найдены в Турции, неподалеку от Бурсы. После истощения запасов в Мериленде Турция являлась лидером по добыче хромитов, пока в 1906 эстафету не перехватили Индия и ЮАР.

Сейчас в мире ежегодно добывается 11–14 миллионов тонн хромитов. Ведущее место по добыче хромовой руды занимает ЮАР (около 6 млн. тонн ежегодно), за ней следует Казахстан, обеспечивая 20% мировых потребностей. Из-за большой глубины залегания хромовой руды ее обычно добывают шахтным способом (85%), но иногда практикуется и открытая (карьерная) добыча, например, в Финляндии и на Мадагаскаре. Обычно добываемые руды относятся к категории достаточно качественных и нуждаются только в механической сортировке. Часто обогащать хромиты нецелесообразно, так как при этом можно повысить только содержание Cr 2 O 3 , а отношение Fe: Cr остается без изменения. Цена хромита на мировом рынке колеблется в пределах 40–120 долларов США за тонну.

Хром – серебристый металл с плотностью 7200 кг/м 3 . Определение температуры плавления чистого хрома представляет собой чрезвычайно трудную задачу, так как малейшие примеси кислорода или азота существенно влияют на величину этой температуры. По результатам современных измерений она равняется 1907° С. Температура кипения хрома 2671° С. Совершенно чистый (без газовых примесей и углерода) хром довольно вязок, ковок и тягуч. При малейшем загрязнении углеродом, водородом, азотом и т.д. становится хрупким, ломким и твердым. При обычных температурах существует в виде a-модификации и имеет кубическую объемноцентрированную решетку. Химически хром довольно инертен вследствие образования на его поверхности прочной тонкой пленки оксида. Он не окисляется на воздухе даже в присутствии влаги, а при нагревании окисление проходит только на поверхности. Хром пассивируется разбавленной и концентрированной азотной кислотой, царской водкой, и даже при кипячении металла с этими реагентами растворяется лишь незначительно. Пассивированный азотной кислотой хром, в отличие от металла без защитного слоя, не растворяется в разбавленных серной и соляной кислотах даже при длительном кипячении в растворах этих кислот, тем не менее, в определенный момент начинается быстрое растворение, сопровождающееся вспениванием от выделяющегося водорода – из пассивной формы хром переходит в активированную, не защищенную пленкой оксида:

Cr + 2HCl = CrCl 2 + H 2

Если в процессе растворения добавить азотной кислоты, то реакция сразу прекращается – хром снова пассивируется.

При нагревании металлический хром соединяется с галогенами, серой, кремнием, бором, углеродом и некоторыми другими элементами:

Cr + 2F 2 = CrF 4 (с примесью CrF 5)

2Cr + 3Cl 2 = 2CrCl 3

2Cr + 3S = Cr 2 S 3

Cr + C = смесь Cr 23 C 6 + Cr 7 C 3 .

При нагревании хрома с расплавленной содой на воздухе, нитратами или хлоратами щелочных металлов получаются соответствующие хроматы(VI):

2Cr + 2Na 2 CO 3 + 3O 2 = 2Na 2 CrO 4 + 2CO 2 .

В зависимости от требуемой степени чистоты металла существует несколько промышленных способов получения хрома.

Возможность алюмотермического восстановления оксида хрома(III) была продемонстрирована еще Фридрихом Вёлером в 1859 однако в промышленном масштабе этот метод стал доступен, как только появилась возможность получения дешевого алюминия. Промышленное алюмотермическое получение хрома началось с работ Гольдшмидта, которому впервые удалось разработать надежный способ регулирования сильно экзотермического (а, следовательно, взрывоопасного) процесса восстановления:

Cr 2 O 3 + 2Al = 2Cr + 2Al 2 O 3 .

Предварительно смесь равномерно прогревается до 500-600° С. Восстановление можно инициировать либо смесью перекиси бария с порошком алюминия, либо запалом небольшой порции шихты с последующим добавлением остального количества смеси. Важно, чтобы выделяющейся в процессе реакции теплоты, хватило на расплавление образующегося хрома и его отделение от шлака. Хром, получающийся алюмотермическим способом, обычно содержит 0,015–0,02% С, 0,02% S и 0,25–0,40% Fe, а массовая доля основного вещества в нем составляет 99,1–99,4% Cr. Он очень хрупок и легко размалывается в порошок.

При получении высокочистого хрома используются электролитические методы, возможность этого в 1854 показал Бунзен , подвергший электролизу водный раствор хлорида хрома. Сейчас электролизу подвергают смеси хромового ангидрида или хромоаммонийных квасцов с разбавленной серной кислотой. Выделяющийся в процессе электролиза хром содержит растворенные газы в качестве примесей. Современные технологии позволяют получать в промышленном масштабе металл чистотой 99,90–99,995% с помощью высокотемпературной очистки в потоке водорода и вакуумной дегазации. Уникальные методики рафинирования электролитического хрома позволяют избавляться от кислорода, серы, азота и водорода, содержащихся в «сыром» продукте.

Есть еще несколько менее значимых способов получения металлического хрома. Силикотермическое восстановление основано на реакции:

2Cr 2 O 3 + 3Si + 3CaO = 4Cr + 3CaSiO 3 .

Восстановление кремнием, хотя и носит экзотермический характер, требует проведения процесса в дуговой печи. Добавка негашеной извести позволяет перевести тугоплавкий диоксид кремния в легкоплавкий шлак силикат кальция.

Восстановление оксида хрома(III) углем применяется для получения высокоуглеродистого хрома, предназначенного для производства специальных сплавов. Процесс также ведется в электродуговой печи.

В процессе Ван Аркеля – Кучмана – Де Бура применяется разложение иодида хрома(III) на нагретой до 1100° С проволоке с осаждением на ней чистого металла.

Хром можно также получать восстановлением Cr 2 O 3 водородом при 1500° С, восстановлением безводного CrCl 3 водородом, щелочными или щелочноземельными металлами, магнием и цинком.

3. ПРИМЕНЕНИЕ ХРОМА В ПРОМЫШЛЕННОСТИ

На протяжении многих десятилетий с момента открытия металлического хрома применение находил лишь крокоит и некоторые другие его соединения в качестве пигментов при изготовлении красок. В 1820 Кохлен предложил использовать дихромат калия как протраву при крашении тканей. В 1884 началось активное использование растворимых хромовых соединений в качестве дубильных веществ в кожевенной промышленности. Впервые хромит нашел применение во Франции в 1879 как огнеупорное вещество, но основное его использование началось в 1880-х в Англии и Швеции, когда стала наращивать обороты промышленная выплавка феррохрома. В небольших количествах феррохром умели получать уже в начале 19 в., так Бертье еще в 1821 предложил восстанавливать смесь оксидов железа и хрома древесным углем в тигле. Первый патент на изготовление хромистой стали был выдан в 1865. Промышленное производство высокоуглеродистого феррохрома началось с использованием доменных печей для восстановления хромита коксом. Феррохром конца 19 в. был очень низкого качества, так как содержал обычно 7–8% хрома, и был известен под названием «тасманского чугуна» ввиду того, что исходная железо-хромовая руда ввозилась из Тасмании. Переломный момент в производстве феррохрома наступил в 1893, когда Анри Муассан впервые выплавил высокоуглеродистый феррохром, содержащий 60% Cr. Основным достижением в этой отрасли стала замена доменной печи на электродуговую, созданную Муассаном, что позволило увеличить температуру процесса, уменьшить расход энергии и значительно повысить качество выплавляемого феррохрома, который стал содержать 67–71% Cr и 4–6% С. Способ Муассана до сих пор лежит в основе современного промышленного производства феррохрома. Восстановление хромита обычно ведут в открытых электродуговых печах, и шихту загружают сверху. Дуга образуется между погруженными в шихту электродами.

Хром встречается в природе в основном в виде хромистого железняка Fe(CrO 2) 2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):

FeO·Cr 2 O 3 + 4C → Fe + 2Cr + 4CO

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты . При этом на катодах совершаются в основном 3 процесса:

– восстановление шестивалентного хрома до трех валентного с переходом его в раствор;

– разряд ионов водорода с выделением газообразного водорода;

– разряд ионов, содержащих шестивалентный хром с осаждением металлического хрома;

Cr 2 O 7 2− + 14Н + + 12е − = 2Сr + 7H 2 O

В свободном виде - голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39 °C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля).

Устойчив на воздухе. При 300 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами . Сплавляя Cr 2 O 3 со щелочами получают хромиты

Несмотря на большое значение высокоуглеродистого феррохрома для получения многих сортов нержавеющих сталей, он не пригоден для выплавки некоторых высокохромистых сталей, так как наличие углерода (в виде карбида Cr 23 C 6 , кристаллизующегося по границам зерен) делает их хрупкими и легко поддающимися коррозии. Производство низкоуглеродистого феррохрома стало развиваться с началом использования промышленного алюмотермического восстановления хромитов. Сейчас алюмотермический процесс вытеснен силикотермическим процессом (процессом Перрена) и симплекс-процессом, заключающемся в смешении высокоуглеродистого феррохрома с частично окисленным порошком феррохрома, последующем брикетировании и нагревании до 1360° С в вакууме. Феррохром, приготовленный симплекс-процессом, обычно содержит всего 0,008% углерода, а брикеты из него легко растворяются в расплаве стали.

Рынок феррохрома цикличен. Мировое производство феррохрома в 2000 составило 4,8 миллиона тонн, а в 2001, из-за низкого спроса, 3,4 миллиона тонн. В 2002 спрос на феррохром вновь активизировался. Первое место в мире по выплавке феррохрома занимает южно-африканская «Большая двойка» (The «Big Two») – компании Xstrata South Africa (Pty) Ltd. (филиал Xstrata AG) и Samancor Chrome Division (филиал Samancor Ltd.). На их долю приходится до 40% мировой выплавки феррохрома. В ЮАР и Финляндии выпускается преимущественно чардж-хром (от англ. charge – загружать уголь), содержащий 52–55% Cr, а в Китае, России, Зимбабве, Казахстане феррохром, содержащий более 60% Cr. Феррохром используется в качестве легирующей добавки к низколегированным сталям. При содержании более 12% хрома сталь почти не ржавеет.

Коррозионную стойкость железных сплавов можно значительно увеличить нанесением на их поверхность тонкого слоя хрома. Такая процедура называется хромированием. Хромированные слои хорошо противостоят воздействию влажной атмосферы, морского воздуха, водопроводной воды, азотной и многих органических кислот. Все способы хромирования можно разделить на два вида – диффузионные и электролитические. Диффузионный способ Беккера – Дэвиса – Штейнберга заключается в нагревании до 1050–1100° С хромируемого изделия в атмосфере водорода, засыпанного смесью феррохрома и огнеупора, предварительно обработанных хлороводородом при 1050° С. Находящийся в порах огнеупора CrCl 2 улетучивается и хромирует изделие. В процессе электролитического хромирования металл осаждается на поверхности обрабатываемого изделия, выступающего в качестве катода. Электролит часто представляет собой соединение шестивалентного хрома (обычно CrO 3), растворенное в водной H 2 SO 4 . Хромовые покрытия бывают защитные и декоративные. Толщина защитных покрытий достигает 0,1 мм, они наносятся непосредственно на изделие и придают ему повышенную износостойкость. Декоративные покрытия имеют эстетическое значение, и наносятся на подслой другого металла (никеля или меди), выполняющего собственно защитную функцию. Толщина такого покрытия всего 0,0002–0,0005 мм.

4. БИОЛОГИЧЕСКАЯ РОЛЬ ХРОМА

Хром – микроэлемент, необходимый для нормального развития и функционирования человеческого организма. Установлено, что в биохимических процессах принимает участие только трехвалентный хром. Важнейшая его биологическая роль состоит в регуляции углеводного обмена и уровня глюкозы в крови. Хром является составной частью низкомолекулярного комплекса – фактора толерантности к глюкозе (GTF), который облегчает взаимодействие клеточных рецепторов с инсулином, уменьшая, тем самым, потребность в нем организма. Фактор толерантности усиливает действие инсулина во всех метаболических процессах с его участием. Кроме того, хром принимает участие в регуляции обмена холестерина и является активатором некоторых ферментов.

Содержание хрома в организме человека составляет 6–12 мг. Точные сведения о физиологической потребности человека в этом элементе отсутствуют, кроме того, она сильно зависит от характера питания (например, сильно возрастает при избытке сахара в рационе). По разным оценкам норма ежедневного поступления хрома в организм составляет 20–300 мкг. Показателем обеспеченности организма хромом служит содержание его в волосах (норма 0,15–0,5 мкг/г). В отличие от многих микроэлементов, содержание хрома в тканях организма (за исключением легочной), по мере старения человека, снижается.

Концентрация элемента в растительной пище на порядок меньше его концентрации в тканях млекопитающих. Особенно высоко содержание хрома в пивных дрожжах, кроме того, в заметных количествах он есть в мясе, печени, бобовых, цельном зерне. Дефицит хрома в организме может вызвать диабетоподобное состояние, способствовать развитию атеросклероза и нарушению высшей нервной деятельности.

Уже в сравнительно небольших концентрациях (доли миллиграмма на м 3 для атмосферы) все соединения хрома оказывают токсическое действие на организм. Особенно опасны в этом отношении растворимые соединения шестивалентного хрома, обладающие аллергическим, мутагенным и канцерогенным действием.

Отравления хромом, и его соединениями встречаются при их производстве; в машиностроении (гальванические покрытия); металлургии (легирующие добавки, сплавы, огнеупоры); при изготовлении кож, красок и т. д. Токсичность соединений Хрома зависит от их химические структуры: дихроматы токсичнее хроматов, соединения Cr (VI) токсичнее соединений Cr(II), Cr(III). Начальные формы заболевания проявляются ощущением сухости и болью в носу, першением в горле, затруднением дыхания, кашлем и т. д.; они могут проходить при прекращении контакта с Хромом. При длительном контакте с соединениями Хрома развиваются признаки хронические отравления: головная боль, слабость, диспепсия, потеря в весе и других. Нарушаются функции желудка, печени и поджелудочной железы. Возможны бронхит, бронхиальная астма, диффузный пневмосклероз. При воздействии Хрома на кожу могут развиться дерматит, экзема. По некоторым данным, соединения Хрома, преимущественно Cr(III), обладают канцерогенным действием.
хромирование. Снижение содержания хрома в пище и крови приводит к уменьшению скорости роста, увеличению

Рипан Р., Четяну И. Неорганическая химия, т.2. – М.: Мир, 1972.

Cr 2+ . Концентрация заряда двухвалентного катиона хрома соответствует концентрации заряда катиона магния и двухвалентного катиона железа, поэтому целый ряд свойств, особенно, кислотно-основное поведение этих катионов близко. При этом, как уже было сказано, Cr 2+ - сильный восстановитель, поэтому в растворе идут следующие реакции: 2CrCl 2 + 2HCl = 2CrCl 3 + H 2 4CrCl 2 + 4HCl + O 2 = 4CrCl 3 + 2H 2 O. Достаточно медленно, но происходит даже окисление водой: 2CrSO 4 + 2H 2 O = 2Cr(OH)SO 4 + H 2 . Окисление двухвалентного хрома происходит даже легче, чем окисление двухвалентного железа, соли также подвергаются гидролизу по катиону в умеренной степени (т.е., доминирующей является первая ступень).

CrO – основной оксид, черного цвета, пирофорен. При 700 о С диспропорционирует: 3CrO = Cr 2 O 3 + Cr. Он может быть получен при термическом разложении соответствующего гидроксида в отсутствие кислорода.

Cr(OH) 2 – нерастворимое основание желтого цвета. Реагирует с кислотами, при этом кислоты-окислители одновременно с кислотно-основным взаимодействием окисляют двухвалентный хром, в определенных условиях это происходит и с кислотами-неокислителями (окислитель – H +). При получении по обменной реакции гидроксид хрома (II) быстро зеленеет из-за окисления:

4Cr(OH) 2 + O 2 = 4CrO(OH) + 2H 2 O.

Окислением сопровождается и разложение гидроксида хрома (II) в присутствии кислорода: 4Cr(OH) 2 = 2Cr 2 O 3 + 4H 2 O.

Cr 3+ . Соединения хрома (III) по химическим свойствам похожи на соединения алюминия и железа (III). Оксид и гидроксид амфотерны. Соли слабых нестойких и нерастворимых кислот(H 2 CO 3 , H 2 SO 3 , H 2 S, H 2 SiO 3) подвергаются необратимому гидролизу:

2CrCl 3 + 3K 2 S + 6H 2 O = 2Cr(OH) 3 ↓ + 3H 2 S + 6KCl ; Cr 2 S 3 + 6H 2 O = 2Cr(OH) 3 ↓ + 3H 2 S.

Но катион хрома (III) – не очень сильный окислитель, поэтому сульфид хрома (III) существует и может быть получен в безводных условиях, правда, не из простых веществ, так как разлагается при нагревании, а по реакции: 2CrCl 3 (кр) + 2H 2 S (газ) = Сr 2 S 3 (кр) + 6HCl. Окислительных свойств трёхвалентного хрома недостаточно для того, чтобы растворы его солей взаимодействовали с медью, но с цинком такая реакция проходит: 2CrCl 3 + Zn = 2CrCl 2 + ZnCl 2.

Cr 2 O 3 – амфотерный оксид зеленого цвета, имеет очень прочную кристаллическую решетку, поэтому химическую активность проявляет только в аморфном состоянии. Реагирует, в основном, при сплавлении с кислотными и основными оксидами, с кислотами и щелочами, а также с соединениями, имеющими кислотные или основные функции:

Cr 2 O 3 + 3K 2 S 2 O 7 = Cr 2 (SO 4) 3 + 3K 2 SO 4 ; Cr 2 O 3 + K 2 CO 3 = 2KCrO 2 + CO 2 .

Cr(OH) 3 (CrO(OH), Cr 2 O 3 *nH­­ 2 O) – амфотерный гидроксид серо-синего цвета. Растворяется и в кислотах, и в щелочах. При растворении в щелочах образуются гидроксокомлексы, в которых катион хрома имеет координационное число 4 или 6:

Cr(OH) 3 + NaOH = Na; Cr(OH) 3 + 3NaOH = Na 3 .

Гидроксокомплексы легко разлагаются кислотами, при этом с сильными и слабыми кислотами процессы различны:

Na + 4HCl = NaCl +CrCl 3 + 4H 2 O ; Na + CO 2 = Cr(OH) 3 ↓ + NaHCO 3.

Соединения Cr(III) являются не только окислителями, но и восстановителями по отношению к превращению в соединения Cr(VI). Особенно легко реакция проходит в щелочной среде:

2Na 3 + 3Cl 2 + 4NaOH = 2Na 2 CrO 4 + 6NaCl + 8H 2 O E 0 =­ - 0,72­ В.

В кислой среде: 2Cr 3+ → Cr 2 O 7 2- E 0 =­ +1,38 В.

Cr +6 . Все соединения Cr(VI) – сильные окислители. Кислотно-основное поведение этих соединений похоже на поведение соединений серы в той же степени окисления. Такое сходство свойств соединений элементов главных и побочных подгрупп в максимальной положительной степени окисления характерно для большинства групп периодической системы.

CrO 3 - соединение тёмно-красного цвета, типичный кислотный оксид. При температуре плавления разлагается: 4CrO 3 = 2Cr 2 O 3 + 3O 2 .

Пример окислительного действия: CrO 3 + NH 3 = Cr 2 O 3 + N 2 + H 2 O (При нагревании).

Оксид хрома(VI) легко растворяется в воде, присоединяя её и превращаясь в гидроксид:

H 2 CrO 4 - хромовая кислота, является сильной двухосновной кислотой. В свободном виде не выделяется, т.к. при концентрации выше 75% идет реакция конденсации с образованием двухромовой кислоты: 2H 2 CrO 4 (жёлт.) = H 2 Cr 2 O 7 (оранж.) + H 2 O.

Дальнейшее концентрирование ведёт к образованию трихромовой (H 2 Cr 3 O 10) и даже тетрахромовой (H 2 Cr 4 O 13) кислот.

Димеризация хромат-аниона происходит также при подкислении. В результате соли хромовой кислоты при pH > 6 существуют как хроматы(K 2 CrO 4) жёлтого цвета, а при pH < 6 как бихроматы(K 2 Cr 2 O 7) оранжевого цвета. Большинство бихроматов растворимы, а растворимость хроматов чётко соответствует растворимости сульфатов соответствующих металлов. В растворах возможно взаимопревращения соответствующих солей:

2K 2 CrO 4 + H 2 SO 4 = K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O; K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O.

Взаимодействие бихромата калия с концентрированной серной кислотой ведёт к образованию хромового ангидрида, нерастворимого в ней:

K 2 Cr 2 O 7 (крист.) + + H 2 SO 4 (конц.) = 2CrO 3 ↓ + K 2 SO 4 + H 2 O;

Бихромат аммония при нагревании претерпевает внутримолекулярную окислительно-восстановительную реакцию: (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

ГАЛОГЕНЫ («рождающие соли»)

Галогенами называются элементы главной подгруппы VII группы периодической системы. Это фтор, хлор, бром, иод, астат. Строение внешнего электронного слоя их атомов: ns 2 np 5 . Т.о., на внешнем электронном уровне находится 7 электронов, и до устойчивой оболочки благородного газа им не хватает всего одного электрона. Являясь предпоследними элементами в периоде, галогены имеют наименьший в периоде радиус. Все это приводит к тому, что галогены проявляют свойства неметаллов, имеют большую электроотрицательность и высокий потенциал ионизации. Галогены являются сильными окислителями, они способны принимать электрон, превращаясь в анион с зарядом "1-" или проявлять степень окисления «-1» при ковалентном связывании с менее электроотрицательными элементами. В то же время, при движении по группе сверху вниз радиус атома увеличивается и окислительная способность галогенов уменьшается. Если фтор является самым сильным окислителем, то иод при взаимодействии с некоторыми сложными веществами, а также с кислородом и другими галогенами проявляет восстановительные свойства.

Атом фтора отличается от других членов группы. Во-первых, он проявляет только отрицательную степень окисления, так как является самым электроотрицательным элементом, а во-вторых, как любой элемент II периода, он имеет только 4 атомных орбитали на внешнем электронном уровне, три из которых заняты неподеленными электронными парами, на четвертой находится неспаренный электрон, который в большинстве случаев и является единственным валентным электроном. В атомах остальных элементов на внешнем уровне имеется незаполненный d-электронный подуровень, куда может переходить возбужденный электрон. Каждая неподеленная пара при распаривании дает два электрона, поэтому основные степени окисления хлора, брома и иода, кроме «-1», это «+1», «+3», «+5», «+7». Менее устойчивыми, но принципиально достижимыми являются степени окисления «+2», «+4» и «+6».

Как простые вещества все галогены представляют собой двухатомные молекулы с одинарной связью между атомами. Энергии диссоциации связей в ряду молекул F 2 , Cl 2 , Br 2 , J 2 следующие: 151 кДж/моль, 239 кДж/моль, 192 кДж/моль, 149 кДж/моль. Монотонное уменьшение энергии связи при переходе от хлора к иоду легко объясняется увеличением длины связи из-за роста радиуса атома. Аномально низкая энергия связи в молекуле фтора имеет два объяснения. Первое касается самой молекулы фтора. Как уже говорилось, фтор имеет очень маленький радиус атома и целых семь электронов на внешнем уровне, поэтому при сближении атомов при образовании молекулы возникает межэлектронное отталкивание, в результате чего перекрывание орбиталей происходит не полностью, и порядок связи в молекуле фтора несколько меньше единицы. Согласно второму объяснению, в молекулах остальных галогенов существует дополнительное донорно-акцепторное перекрывание неподеленной электронной пары одного атома и свободной d-орбитали другого атома, по два таких противоположных взаимодействия на молекулу. Т.о., связь в молекулах хлора, брома и иода определяется как почти тройная с точки зрения наличия взаимодействий. Но донорно-акцепторные перекрывания происходят лишь частично, и связь имеет порядок (для молекулы хлора) 1,12.

Физические свойства: При обычных условиях фтор – это трудно сжижаемый газ (температура кипения которого -187 0 С) светло-желтого цвета, хлор – легко сжижаемый (температура кипения равна –34,2 0 С) газ желто-зеленого цвета, бром – бурая легко испаряющаяся жидкость, иод – твердое вещество серого цвета с металлическим блеском. В твердом состоянии все галогены образуют молекулярную кристаллическую решетку, характеризующуюся слабыми межмолекулярными взаимодействиями. В связи с чем иод имеет склонность к возгонке – при нагревании при атмосферном давлении переходит в газообразное состояние (образует фиолетовые пары), минуя жидкое. При движении по группе сверху вниз температуры плавления и кипения увеличиваются как за счет увеличения молекулярной массы веществ, так и за счет усиления сил Ван-дер-Ваальса, действующих между молекулами. Величина этих сил тем больше, чем больше поляризуемость молекулы, которая, в свою очередь, возрастает с увеличением радиуса атома.

Все галогены плохо растворяются в воде, но хорошо – в неполярных органических растворителях, например, в четыреххлористом углероде. Плохая растворимость в воде связана с тем, что при образовании полости для растворения молекулы галогена вода теряет достаточно прочные водородные связи, взамен которых между ее полярной молекулой и неполярной молекулой галогена никаких сильных взаимодействий не возникает. Растворение галогенов в неполярных растворителях соответствует ситуации: «подобное растворяется в подобном», когда характер рвущихся и образующихся связей одинаковый.

Хром

ХРОМ -а; м. [от греч. chrōma - цвет, краска]

1. Химический элемент (Сr), твёрдый металл серо-стального цвета (используется при изготовлении твёрдых сплавов и для покрытия металлических изделий).

2. Мягкая тонкая кожа, выдубленная солями этого металла. Сапоги из хрома.

3. Род жёлтой краски, получаемой из хроматов.

Хро́мовый (см.).

хром

(лат. Chromium), химический элемент VI группы периодической системы. Назван от греч. chrōma - цвет, краска (из-за яркой окраски соединений). Голубовато-серебристый металл; плотность 7,19 г/см 3 , t пл 1890°C. На воздухе не окисляется. Главные минералы - хромшпинелиды. Хром - обязательный компонент нержавеющих, кислотоупорных, жаростойких сталей и большого числа других сплавов (нихромы, хромали, стеллит). Применяется для хромирования. Соединения хрома - окислители, неорганические пигменты, дубители.

ХРОМ

ХРОМ (лат. chromium, от греческого хрома - цвет, окраска, для соединений хрома характерна широкая цветовая палитра), Cr (читается «хром»), химический элемент с атомным номером 24, атомная масса 51,9961. Расположен в группе VIB в 4 периоде периодической системы элементов.
Природный хром состоит из смеси четырех стабильных нуклидов: 50 Cr (содержание в смеси 4,35%), 52 Cr (83,79%), 53 Cr (9,50%) и 54 Cr (2,36%). Конфигурация двух внешних электронных слоев 3s 2 р 6 d 5 4s 1 . Степени окисления от 0 до +6 , наиболее характерны +3 (самая устойчивая) и +6 (валентности III и VI).
Радиус нейтрального атома 0,127 нм, радиус ионов (координационное число 6): Cr 2+ 0,073 нм, Cr 3+ 0,0615 нм, Cr 4+ 0,055 нм, Cr 5+ 0,049 нм и Cr 6+ 0,044 нм. Энергии последовательной ионизации 6,766, 16,49, 30,96, 49,1, 69,3 и 90,6 эВ. Сродство к электрону 1,6 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,66.
История открытия
В 1766 в окрестностях Екатеринбурга был обнаружен минерал, который получил название «сибирский красный свинец», PbCrO 4 . Современное название - крокоит. В 1797 французский химик Л. Н. Воклен (см. ВОКЛЕН Луи Никола) выделил из него новый тугоплавкий металл (скорее всего Воклен получил карбид хрома).
Нахождение в природе
Содержание в земной коре 0,035 % по массе. В морской воде содержание хрома 2·10 -5 мг/л. В свободном виде хром практически не встречается. Входит в состав более 40 различных минералов (хромит FeCr 2 O 4 , волконскоит, уваровит, вокеленит и др.). Некоторые метеориты содержат сульфидные соединения хрома.
Получение
Промышленным сырьем при производстве хрома и сплавов на его основе служит хромит. Восстановительной плвкой хромита с коксом (восстановителем), железной рудой и другими компонентами получают феррохром с содержанием хрома до 80% (по массе).
Для получения чистого металлического хрома хромит с содой и известняком обжигают в печах:
2Cr 2 O 3 + 2Na 2 CO 3 + 3O 2 = 4Na 2 CrO 4 + 4CO 2
Образующийся хромат натрия Na 2 CrO 4 выщелачивают водой, раствор фильтруют, упаривают и обрабатывают кислотой. При этом хромат Na 2 CrO 4 переходит в дихромат Na 2 Cr 2 O 7:
2Na 2 CrO 4 + H 2 SO 4 = Na 2 Cr 2 O 7 + Na 2 SO 4 + H 2 O
Полученный дихромат восстанавливают серой:
Na 2 Cr 2 O 7 + 3S = Na 2 S + Cr 2 O 3 + 2SO 2
,
Образующийся чистый оксид хрома(III) Cr 2 O 3 подвергают алюминотермии:
Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr.
Также используют кремний:
2Cr 2 O 3 + 3Si = 3SiO 2 + 4Cr
Для получения хрома высокой чистоты, технический хром электрохимически очищают от примесей.
Физические и химические свойства
В свободном виде - голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39°C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля). Температура плавления 1890°C, температура кипения 2680°C. Плотность 7,19 кг/дм 3 .
Устойчив на воздухе. При 300°C сгорает с образованием зеленого оксида хрома (III) Cr 2 O 3 , обладающего амфотерными свойствами. Сплавляя Cr 2 O 3 со щелочами получают хромиты:
Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах:
Cr 2 O 3 + 6НСl = 2CrСl 3 + 3Н 2 О
При термическом разложении карбонила хрома Cr(OH) 6 получают красный основной оксид хрома(II) CrO. Коричневый или желтый гидроксид Cr(OН) 2 со слабоосновными свойствами осаждается при добавлении щелочей к растворам солей хрома(II).
При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают диоксид хрома(IV) CrO 2 , который является ферромагнетиком и обладает металлической проводимостью.
При взаимодействии концентрированной серной кислоты с растворами дихроматов образуются красные или фиолетово-красные кристаллы оксида хрома(VI) CrO 3 . Типично кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовая H 2 CrO 4 , дихромовая H 2 Cr 2 O 7 и другие.
Известны галогениды, соответствующие разным степеням окисления хрома. Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и СrI 2 и тригалогениды CrF 3 , CrCl 3 , CrBr 3 и СrI 3 . Однако, в отличие от аналогичных соединений алюминия и железа, трихлорид CrCl 3 и трибромид CrBr 3 хрома нелетучи.
Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах. Известен гексафторид хрома CrF 6 .
Получены и охарактеризованы оксигалогениды хрома CrO 2 F 2 и CrO 2 Cl 2 .
Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).
В растворах наиболее устойчивы соединения хрома(III). В этой степени окисления хрому соответствуют как катионная форма, так и анионные формы, например, существующий в щелочной среде анион 3- .
При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):
2Na 3 + 3H 2 O 2 = 2Na 2 CrO 4 + 2NaOH + 8H 2 O
Cr (VI) отвечает ряд существующих только в водных растворах кислот: хромовая H 2 CrO 4 , дихромовая H 2 Cr 2 O 7 , трихромовая H 3 Cr 3 O 10 и другие, которые образуют соли - хроматы, дихроматы, трихроматы и т. д.
В зависимости от кислотности среды анионы этих кислот легко превращаются друг в друга. Например, при подкислении желтого раствора хромата калия K 2 CrO 4 образуется оранжевый дихромат калия K 2 Cr 2 O 7:
2K 2 CrO 4 + 2НСl = K 2 Cr 2 O 7 + 2КСl + Н 2 О
Но если к оранжевому раствору K 2 Cr 2 O 7 прилить раствор щелочи, как окраска вновь переходит в желтую т. к. снова образуется хромат калия K 2 CrO 4:
K 2 Cr 2 O 7 + 2КОН = 2K 2 CrO 4 + Н 2 О
При добавлении к желтому раствору, содержащему хромат-ионы, раствора соли бария выпадает желтый осадок хромата бария BаCrO 4:
Bа 2+ + CrO 4 2- = BаCrO 4
Соединения хрома(III)- сильные окислители, например:
K 2 Cr 2 O 7 + 14 НСl = 2CrCl 3 + 2KCl + 3Cl 2 + 7H 2 O
Применение
Использование хрома основано на его жаропрочности, твердости и устойчивости к коррозии. Применяют для получения сплавов: нержавеющей стали, нихрома и др. Большое количество хрома идет на декоративные коррозионно-стойкие покрытия. Соединения хрома - огнеупорные материалы. Оксид хрома (III) - пигмент зеленой краски, также входит в состав абразивных материалов (паст ГОИ). Изменение окраски при восстановлении соединений хрома(VI) применяют для проведения экспресс-анализа на содержание алкоголя в выдыхаемом воздухе.
Катион Cr 3+ входит в состав хромкалиевых KCr(SO 4) 2 ·12H 2 O квасцов, использующихся при выделке кожи.
Физиологическое действие
Хром - один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хромма в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови.
Металлический хром практически нетоксичен, но металлическая пыль хрома раздражает ткани легких. Соединения хрома(III) вызывают дерматиты. Соединения хрома(VI) приводят к разным заболеваниям человека, в том числе и онкологическим. ПДК хрома(VI) в атмосферном воздухе 0,0015 мг/м 3 .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "хром" в других словарях:

    хром - хром, а … Русский орфографический словарь

    хром - хром/ … Морфемно-орфографический словарь

    - (от греч. chroma цвет, краска). Металл сероватого цвета, добываемый из хромовой руды. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ХРОМ металл сероватого цвета; в чистом виде х. не употребляется; соединения же с … Словарь иностранных слов русского языка

    ХРОМ - см. ХРОМ (Сг). Соединения хрома встречаются в сточных водах многих промышленных предприятий, производящих хромовые соли, ацетилен, дубильные вещества, анилин, линолеум, бумагу, краски, пестициды, пластмассы и др. В воде встречаются трехвалентные… … Болезни рыб: Справочник

    ХРОМ, а, муж. 1. Химический элемент, твёрдый светло серый блестящий металл. 2. Род жёлтой краски (спец.). | прил. хромистый, ая, ое (к 1 знач.) и хромовый, ая, ое. Хромистая сталь. Хромовая руда. II. ХРОМ, а, муж. Сорт мягкой тонкой кожи. | прил … Толковый словарь Ожегова

    хром - а, м. chrome m. <новолат. chromium <лат. chroma <гр. краска. 1. Химический элемент твердый серебристый металл, употребляемый при изготовлении твердых сплаво и для покрытия металлических изделий. БАС 1. Металл, открытый Вокеленом,… … Исторический словарь галлицизмов русского языка

    ХРОМ - ХРОМ, Chromium (от греч. chroma краска), I симв. Сг, хим. элемент с ат. весом 52,01 (изо! топы 50, 52, 53, 54); порядковое число 24, за! нимает место в четной подгруппе VІ группы j таблицы Менделеева. Соединения X. часто i встречаются в природе … Большая медицинская энциклопедия

    - (лат. Chromium) Cr, химический элемент VI группы Периодической системы Менделеева, атомный номер 24, атомная масса 51,9961. Название от греч. chroma цвет, краска (из за яркой окраски Соединения). Голубовато серебристый металл; плотность 7,19… … Большой Энциклопедический словарь

    ХРОМ 1, а, м. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    ХРОМ 2, а, м. Сорт мягкой тонкой кожи. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Введение

Степень окисления (СО) - это условное обозначение в химии, служащее для того, чтобы определять заряд атома у какого-либо химического элемента (или группы элементов) . Без степеней окисления не решается ни одна задача, не составляется ни одно уравнение, но самое главное - без них мы не можем чётко определить свойства элемента и то, какую роль он будет играть в различных соединениях.

Знаменательно, что периодическая система (ПС) Д.И. Менделеева сгруппирована гениальнейшим образом: все элементы разделены по периодам, группам, подгруппам, их порядковые номера также соответствуют определённым показателям. Благодаря этому нам не приходится заучивать качества каждого химического элемента (ХЭ) наизусть, потому что легко можно найти его в таблице и определить всё, что требуется. Однако даже в таком случае некоторые люди, забывая школьные знания по курсу химии (или пренебрегая ими когда-то), вынуждены вернуться к изучению данной темы подробнее.

Итак, для начала необходимо сформировать верные объективные представления о хроме (Cr ), разобраться с его положением в ПС, а затем можно будет приступить к наиболее важной части - практике.
Хром - Cr , положение в таблице Менделеева, физические и химические свойства
Хром - это твёрдое вещество, металл, блестящий, серебристо-белого (или голубоватого) цвета . Он достаточно ломкий, но при этом имеет несравненный плюс по сравнению со многими другими металлами - устойчивость к заражению коррозией; именно поэтому он является важным компонентом при производстве нержавеющей стали, а также используется для нанесения на поверхность других металлов, более склонных к коррозии. Хром обладает плохой тепло- и электропроводностью.

ХЭ располагается в VI группе, 4 периоде, носит порядковый номер 24 и обладает атомной массой равной 52 г/моль. Благодаря пассивированию хром не взаимодействует с серной (H 2 SO 4 ) и азотной (HNO 3 ) кислотами, проявляет устойчивость в воздухе.

Это амфотерный металл - значит, он может растворяться как в кислотах, так и в щелочах . Элемент растворяется в сильных разбавленных кислотах (например, соляная кислота HCl ), в нормальных условиях (н.у.) взаимодействует только с фтором (F ). При нагревании хром может осуществлять взаимодействие с элементами VII группы (галогены), кислородом O 2 , бором B, азотом N 2 , серой S 2 , кремнием Si . Если раскалить Cr , то способен вступить в реакцию с водяными парами.

Теперь поговорим непосредственно о том, какие степени окисления бывают у данного ХЭ: он может приобретать СО +4, +6, а также +2 в безвоздушном пространстве, +3 - в пространстве с воздухом. Хром, как любой другой металл, является сильным восстановителем.

Вещества с различными степенями окисления

  • +2. Когда Cr приобретает СО +2, вещество демонстрирует основные и очень сильные восстановительные свойства. К примеру, оксид хрома (II) - CrO , гидроксид хрома - Cr(OH) 2 , множество солей. Синтезируются соединения этого элемента с фтором(CrF 2 ), хлором(CrCl 2 ) и так далее.
  • +3. Эти вещества обладают амфотерными свойствами, могут быть разных цветов (но преимущественно зелёного H 2 O ). Для примера приведём оксид Cr 2 O 3 (это зеленоватый порошок, который не растворяется в), Cr(OH) 3 , хромиты NaCrO 2 .
  • +4. Такие соединения встречаются очень редко: они не образуют солей, кислот, с ними почти не производятся какие-либо работы. Но из известных веществ существуют оксид CrO 2 , тетрагалогенид CrF 4 , CrCl 4 .
  • +6. Хром с СО +6, образуя соли, имеет кислотный характер, очень ядовитый, гидроскопичный, а также имеющий сильные окислительные свойства. Примеры: CrO 3 (имеет вид кристаллов красного цвета), K 2 CrO 4 , H 2 CrO 4 , H 2 Cr 2 O 7 . Элемент способен образовывать два вида гидроксидов (уже перечислены).

Как определять СО в сложных веществах

С правилом «крест-накрест» вы наверняка уже знакомы. А что, если соединение имеет, например, целых три элемента ?

В этом случае мы смотрим на последний элемент вещества, определяем его степень окисления и умножаем на коэффициент, находящийся справа (конечно, если он есть). Мысленно отделяем последний элемент (с уже определённой степенью окисления) от двух других элементов. Нам требуется, чтобы СО двух первых и последнего элементов в сумме была равна нулю.

Рассмотрим пример:

  • PbCrO 4 - хромат свинца (II), имеющий вид красной соли. На конце формулы находится кислород, степень окисления которого всегда (за исключением некоторых случаев) будет -2. -2*4=-8. Pb (свинец) имеет СО +2. Дальнейшие действия будут похожи на алгебраическое уравнение, но если честно, то когда человек уже неплохо разбирается в определении степеней окислений и умеет пользоваться таблицей растворимости, вполне возможно избежать таких расчётов. Итак, элемент с неизвестной степенью окисления (хром) обозначим за буквенную переменную. 2+x-8=0;x=8-2;x=6 . Переменная равна 6, следовательно, степень окисления хрома становится +6.

Степени окисления в следующих формулах попробуйте расставить сами:

  1. Na 2 CrO 4 ;
  2. BaCrO 4 ;
  3. Fe(CrO 2) 2 ;
  4. Cr 2 O 7 ;
  5. H 2 CrO 4 .

Хром - один из самых интересных химических элементов, соединения с которым - штука сложная, но необходимая для понимания . Будет замечательно, если данные примеры помогут разобраться со столь кропотливой темой.

Редакция "сайт"