Пути снижения антропогенного воздействия на окружающую среду. Антропогенные отрицательные. Естественное загрязнение атмосферы


Объективная оценка последствий антропогенной деятельности возможна лишь при рассмотрении природной среды как сложной системы , развивающейся по свои законам, которые должны учитывать человеком в его деятельности.

Системный взгляд на природную среду отражается в понятии биосфера (которым обозначается область существования жизни на Земле).

По определению В.И. Вернадского биосфера включает в себя компоненты неживой природы:

· Литосферу (верхний слой земной коры)

· Атмосферу (ее нижний слой)

· Гидросферу (водную оболочку)

А так же важнейший элемент – совокупность живых организмов («живое вещество» - по Вернадскому) – мощный фактор воздействия на неживую природу и ее преобразования

Биосфера – динамическая система , в которой происходит непрерывное перемещение вещества. В то же время она обладает определенной устойчивостью - способна к саморегулированию и сохранению своей структуры при изменении внешних условий.

Для биосферы характерным является не просто поступательное перемещение вещества, а круговорот веществ , т.е. циклический процесс обмена веществом между различными компонентами биосферы в результате совокупности химических и биохимических превращений.

Круговорот совершают все химические элементы. Эти процессы не изолированы друг от друга, частично перекрываются и согласованы (сбалансированы) меду собой. Существование множества согласованных циклических процессов обмена химическими элементами между различными компонентами биосферы и обуславливает ее устойчивость к воздействиям внешних возбуждающих факторов, е числу которых относится и человеческая деятельность.

Можно выделить 2 основных аспекта (вида) антропогенного воздействия на окружающую среду, сопровождающаяся негативными последствиями.

1. Поступление в окружающую среду химических веществ, чуждых природе, несвойственных живым организмам (является результатом органического синтеза - ксенобиотиков).

Последствия поступления в ОС синтезированных человеком веществ может быть разнообразным. Ряд веществ – ксенобиотиков – несут прямую угрозу живым организмам, в первую очередь высшим, поскольку являются сильными ядами для них (пестициды, ПХБ). Другие вещества (химически не опасные для живого) в ОС так же могут привести к пагубны последствиям – прекрасная иллюстрация ФХУ, которые первоначально казались абсолютно безвредными для ОС, но в конечном итоге привели к такой ситуации (нарушение озонового слоя), что жизнь на Земле в определенной мере оказалась под угрозой. Отсюда задача науки ХОС – оценка поведения этих веществ в ОС, влияние их на природные процессы.

2. Изменения в природных круговоротах в результате добавления или удаления присутствующих в них химических веществ в ходе человеческой деятельности, что влияет на устойчивость биосферы.



Природные круговороты претерпевают неестественные изменения. Но естественные изменения в природной среде происходят так медленно, что для всего живого сохранятся возможность приспособится генетически к этим изменениям. Человек ускоряет движение лишних веществ, так что возможно нарушение цикличности. В результате в одних местах возможен избыток, в других недостаток того или иного вещества. При антропогенном вмешательстве для такого приспособления времени и шансов мало и последствия могут быть весьма существенными.

Хозяйственная деятельность затрагивает не один какой либо природный круговорот, а все без исключения. Отсюда следует, что одной из важных задач науки ХОС является тщательный анализ природных круговоротов отдельных химических элементов с целью выявления антропогенных нарушений в них и оценки последствий этих нарушений.

Учитывая это, рассмотрим круговороты основных биогенных элементов (составляющих основу живых организмов) С, О, N, P, S в биосфере и попытаемся оценить изменения в этих эволюционно сложившихся круговоротах, вызванных человеком и возможные последствия этих изменений.

КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ ВЕЩЕСТВ

В ОКРУЖАЮЩЕЙ СРЕДЕ

Круговорот углерода

Углерод составляет основу всех жизненных процессов в организмах он же в огромных масштабах вовлекается в хозяйственную деятельность. Таким образом круговорот С – весьма удобный объект для анализ проблем, вызванных антропогенным воздействием на круговорот веществ в природе.



Резервуарами углерода, участвующего в круговороте, являются все геосферы – атмосфера, гидросфера, литосфера. Масса углерода в этих резервуарах соотносится примерно как 1:50:1300.

В атмосфер е практически весь углерод содержится в форме СО 2 . В гидросфере (главным образом в океанах – основном резервуаре гидросферы) углерод присутствует в преимуществен но в неорганической форме - в виде НСО 3 - - (на долю органического углерода приходится около 2% от общей массы).

Наибольшее количество углерода в целом (и СО 2) сосредоточено в литосфере . Однако углерод литосферы медленно вовлекается в естественные биохимические процессы, таки образом биохимический цикл углерода преимущественно охватывает атмосферу и гидросферу.

Самый важный компонент природного цикла углерода – газообразный СО 2 , таким образом рассматривая цикл углерода, естественно рассматривают прежде всего СО 2 и процессы с его участием.

Круговорот С в биосфере (биогеохимический цикл) можно представить схемой (рис 1 раздатка):

СО 2 , находящийся в атмосфере, является основным источником наращивания биомассы (при действии организмов - продуцентов). В процессе фотосинтеза СО 2 превращается в углеводы, которые затем в процессах биосинтеза превращаются в белки и т.п. (благодаря организмам-консументам, синтезирующим разнообразные вещества).

Часть С в виде СО 2 в процессе дыхания живых организмов возвращается в атмосферу. При микробиологическом разложении органических веществ погибших организмов СО 2 также возвращается в цикл и он (цикл) таким образом замыкается.

Очень важную роль в круговороте углерода играет газообмен между атмосферой и гидросферой (водами мирового океана). Растворенный в воде СО 2 частично потребляется фитопланктоном, расходуясь на фотосинтез, и затем высвобождается в результате деятельности деструкторов, т.е. включается в круговорот. Океаническая вода содержит значительные количества ионов Са 2+ и Mg 2+ . При растворении СО 2 в морской воде образуется карбонатная система, которая описывается равновесием:

Это равновесие зависит от парциального давления СО 2 в атмосфере и от температуры. Концентрация СО 2 в поверхностных слоях воды является равновесной в его одержанием в атмосфере при заданных условиях (). При повышении концентрации СО 2 в атмосфере повышается его содержание в морской воде и происходит сдвиг равновесия в сторону образования бикарбонатов. При снижении концентрации СО 2 в атмосфере возможна дегазация вод океана, сопровождающаяся выделением СО 2 . Таки образом мировой океан играет роль своеобразного буфера, сглаживающего колебания содержания СО 2 в атмосфере.

Биосферный цикл углерода замкнут не полностью, т.е. не весь углерод, вовлекаемый в фотосинтез, возвращается в цикл. Часть углерода выводится из биосферы в своеобразные биологические тупики:

1. осаждается в виде карбонатов (в водной среде) из которых формируются осадочные породы;

2. накапливаются в виде гумуса в почве и торфа, формирующихся из остатков погибших растений и животных организмов, или в виде донных отложений (органический углерод гумуса в силу особенности строения не может быть использован живыми организмами – геополимеры гумуса устойчивы к микробиологическому разложению);

3. накапливаются в виде органического углерода ископаемых топлив, формирующихся в определенных условиях.

Естественными процессами, обусловливающими пополнение цикла углерода углекислым газом является вулканическая деятельность, лесные пожары, дегазация мантии Земли. Наряду с ними к дополнительному внесению СО 2 в цикл является и хозяйственная деятельность. Именно это является главным фактором вмешательства хозяйственной деятельности в естественный круговорот углерода.

Деятельность человека сопровождается интенсивным возвращением в круговорот С запасов углерода, находящихся в природных залежах. (т.е. временно выключенных из круговорота)

· прежде всего в результате сжигания органического топлива, что приводит к поступлению в атмосферу колоссальных количеств CO 2

· значительный аналогичный вклад вносит металлургия, производство строительных материалов (цемента: )

· дополнительное количество СО 2 поступает в атмосферу, например при выпадении кислотных дождей в районах с карбонатными породами, при сельскохозяйственных мероприятиях по известкованию почв.

По некоторым оценкам ежегодное поступление СО 2 в атмосферу в результате хозяйственной деятельности примерно в 100 раз превышает его поступление вследствие геологических процессов и составляет до 10% биогенного потока СО 2 в атмосферу.

Есть ряд природных факторов, способствующих связыванию СО 2 и препятствующих накоплению СО 2 в цикле.

· Рост биомассы

· Образование гумуса в почвах

· Усиление процесса выветривания минералов ведущих к образованию карбонатов

· и главный фактор – поглощение избыточного СО 2 мировым океаном.

Однако антропогенное давление на ОС в настоящее время таково, что баланс СО 2 нарушен, его содержание непрерывно увеличивается - прирост за последние 100 лет около 15% и темпы растут.

В тоже время накопление СО 2 в атмосфере способно существенно повлиять на климат, т.е. масштабы и тепы использования ископаемого топлива несут серьезную угрозу глобальных изменений климата, последствия которых трудно оценить, но по общему мнению – они отрицательны для развития цивилизации.

Круговорот кислорода. Фотосинтез.

В процессах составляющих основу круговорота О 2 участвует кислород, присутствующий в атмосфере.

В атмосфере содержится 1,2*10 15 тонн О 2 . Главный источник кислорода – фотосинтез, который дает около 2,5*10 11 тонн/год. Другой источник – фотодиссоциация молекул Н 2 О дает примерно 2*10 6 тонн О 2 в год, т.е. на несколько порядков меньше.

Свободный кислород будучи окислителем участвует в геохимических процессах окисляя восстановленные формы элементов

Окисление органических веществ(СН 4), N 2 в сумме не более 1% от общего расхода.

Основная масса О 2 используется для обеспечения:

1. жизнедеятельности (дыхание)

2. микробиологической деструкции органических веществ

3. очень небольшую долю составляет расход О 2 в производственных процессах (сжигание топлива, технологические процессы).

Таким образом образование и потребление О 2 происходит практически в замкнутом цикле фотосинтеза и деструкции органического вещества в биосфере и цикл О 2 можно представить простой схемой (рис 2 раздатка).

Фотохимические процессы составляют основу круговорота О 2 и его соединений (Н 2 О, СО 2). Они протекают в фотосинтезирующих организмах – растениях. Фотосинтезирующие организмы составляют около 90% биомассы всех живых организмов на Земле, общая же биомасса животных примерно 0,1% биомассы растений, таки образом вклад животных в биологический круговорот О 2 пренебрежимо мал в сравнении с вкладом автотрофных растений и микроорганизмов.

Источником фотосинтетического О 2 являются континентальная и морская растительность. Причем почти половину его общего количества (по разны источникам от 30 до 50%) образуется за счет фитопланктона (микроскопических водорослей), содержащегося в верхних слоях вод морей и океанов, хотя биомасса фитопланктона существенно меньше биомассы континентальной растительности.

Фотосинтез – процесс образования глюкозы из двух простых соединений Н 2 О и СО 2 , протекающий при освещении под действием катализатора, которым является хлорофилл, содержащийся в клетках листьев зеленых растений или водорослей. Суммарная химическая реакция процесса фотосинтеза выражается уравнением:

Глюкоза служит исходным материалом для формирования растений

По-существу, фотосинтез, - процесс преобразования энергии солнечного излучения в химическую энергию (протекающей с достаточно высокой эффективностью ~ 5 %)

Фундаментальный процесс запасания солнечной энергии в виде химической при фотосинтезе – окисление воды до О 2

Эта реакция – 1-ый этап фотосинтеза, требующий освещения.

Второй процесс (темновая) стадия синтеза органического вещества – восстановление СО 2 до уровня глюкозы

Суммарная реакция:

Где под подразумевается 1/6 часть глюкозы.

Фотосинтез протекает во фрагментах клетки, которые называются хлоропласты – в их структурах содержаться фотосинтетические пигменты, основным из которых является хлорофилл.

Хлорофилл представляет собой порфириновую систему, основой которой является пиррольный цикл.

Механизм фотосинтеза имеет сложную природу и еще до конца не ясен. В общем виде механизм выглядит следующим образом:

При поглощении солнечного излучения (хлорофилл поглощает главным образом синий – 450 нм и красный 650 нм свет) молекулы Chl переходят в возбужденное состояние:

Энергия возбуждения по цепи сопряжения передается в реакционный центр хлоропласта (включающий до 300 молекул пигмента). В реакционных центрах образуются катион-радикалы димера хлоропласта (Chl 2 +), лоторые окисляют воду в 4-х электронном процессе (реакция 1) (). Т.е. энергия активированных молекул хлорофилла расходуется на окисление воды до О 2 и восстановление СО 2 .

Важную роль при это играет, как полагают, Mn, который является непосредственным окислителем.

Формальная схема фотокаталитического окисления воды выглядит следующим образом:

Первоначально Mn окисляется катион-радикалом димера Chl 2 + , затем Mn 4+ непосредственно окисляет воду.

Скорость фотосинтеза (R) зависит от интенсивности света. Влияние этого фактора отражает следующая зависимость:

В темноте скорость фотосинтеза = 0, затем по мере увеличения интенсивности R возрастает линейно и затем форм зависимости меняется и при некоторой интенсивности R достигает максимального значения (R max), величина которого зависит от соотношения парциальных давлений и в атмосфере. В ясный день интенсивность света может достигать 3,3дж/см 2 мин, что обеспечивает максимальную скорость фотосинтеза (R max). В пасмурный день освещенность может снижаться примерно в 5 раз, а скорость фотосинтеза лишь наполовину.

Как видно из представленной зависимости, чтобы вызвать существенное изменение скорости фотосинтеза и соответственно снижение количества поступающего в атмосферу кислорода, нужно очень существенное уменьшение интенсивности света. Такой случай по естественным причинам маловероятен (разве что какая либо гипотетическая катастрофа типа падения на Землю гигантского астероида, взрыв которого в плотных слоях атмосферы) мог бы вызвать образование мощных пылевых облаков над всей территорией Земли. Аналогичные катастрофические последствия могла бы вызвать глобальная ядерная война.

Существенную угрозу для фотосинтеза представляет розливы нефти и нефтепродуктов в мировом океане. Как отмечалось, очень важную роль в снабжении атмосферы кислородом играет фитопланктон. При разливах нефтепродуктов образуется такая углеводородная пленка на поверхности воды, препятствующая газообмену с атмосферой и естественно нарушающая процесс фотосинтеза. На баланс О 2 в атмосфере в определенной степени может влиять сельскохозяйственная деятельность, а именно распашка земель, занимаемых лесами, т.е. уменьшение площадей, занимаемой фотосинтезирующей наземной растительностью (и аналогичные по последствия действия).

Однако в настоящее время нет непосредственных признаков нарушения цикла кислорода. Запасы кислорода достаточно велики: на 1 м 2 земной поверхности приходится около 60000 моль О 2, расход на дыхание всего 8 моль/1 м 2 поверхности в год. Если мы сожжем все известные запасы ископаемого топлива, то используем всего лишь 3% имеющегося О 2. Проблемы могут возникнуть из-за тех последствий антропогенной деятельности, которая сопровождается уничтожение лесов, разрушение почвенного покрова, гибели фитопланктона из-за загрязнения океанических вод нефтепродуктами.

Круговорот азота

Азот в той или иной форме присутствует во всей биосфере. Это важнейший биогенный элемент, входящий в состав биомолекул живых организмов – белков (где его доля до 16-18%), нуклеиновых кислот, хлорофилла, гемоглобина. Азот – основной компонент биосферы (его содержание ~ 79 %) В гидросфере содержание азота во всех химических формах в среднем 5*10 -5 моль/л.

Газообразный N 2 служит основным резервом для круговорота азота. При этом в глобальном биогеохимическом цикле азота ведущая роль принадлежит массообмену между атмосферой и почвой, где азот связан с живым органическим веществом, органическим остатком или гумусом. Большинство биологических форм не усваивает молекулярный азот, для того чтобы свободный азот атмосферы мог быть использован в биологических процессах, он должен быть превращен в органические (карбамид, аминокислоты, белки) или неорганические соединения (NH 3 , аммонийные соли, нитраты), т.е. химически связан в какие то соединения. Это химическое связывание (фиксация) возможно физико-химическим способом (1) либо биологически путем (2) причем биологический способ играет главную роль в вовлечении свободного азота в круговорот.

1) небиологическая фиксация N 2 (N N) в естественных условиях происходит:

а) в основном при электрических разрядах в атмосфере. Электрический разряд инициирует распад молекулы N 2 на атомы (это происходит в само канале молнии где температура достигает тысячи градусов)

и ряд последующих процессов, приводящих к образованию оксидов азота.

технические процессы:

б) Образование оксидов азота из азота воздуха происходит так же в технологических процессах при высоких температурах (в двигателях внутреннего сгорания, при сжигании топлива)

в) еще один химический способ связывания азота – целенаправленный технический процесс производства NH 3 при взаимодействии N 2 и H 2, широко используемый в промышленности азотных удобрений

2) Биологический путь фиксации молекулярного азота – химическое связывание так называемыми клубеньковыми бактериями, свободно обитающими либо симбиотически связанными с некоторыми видами растений, обитающими в корнях некоторых наземных растений семейства бобовых (клевер, горох, люцерна и т.д.), а в гидросфере – сине-зелеными водорослями (известно что растения семейства бобовых значительно обогащают почву легкоусваиваимыми соединениями азота – клевер например дает до 150 кг связанного азота в год)

Фиксация азота клубеньковыми бактериями – восстановительный ферментативный процесс, катализатором которого служит фермент нитрогеназа , содержащийся в клетках бактерий. Нитрогеназа – сложный белковый комплекс из 2-х белков (ММ=230 тыс. и 60 тыс.) в состав которого входят атомы Мо и Fe

Фиксация осуществляется по схеме:


Переносчикам электронов в окислительно-восстановительном процессе являются атомы Мо и Fe, легко меняющие степени окисления.

В результате фиксации растения получают азот в доступной для них форме. Другой вид автотрофных бактерий (автотрофы – синтезирующие их простых неорганических соединений сложные органические ) способен окислять азот в аммиаке – осуществлять процесс нитрификации (образование нитритов и нитратов) - то происходит довольно быстро в почвах и водных экосистемах

Процесс при участии бактерий – нитрозомоназ и нитробактер

Бактерии азобактер

Связанный азот в аммонийной и или нитратной форме усваивается растениями и используется в синтезе азотсодержащих органических соединений - аминокислот (структурные единицы белков) и белков растений (причем аммонийный азот является предпочтительной формой доступного азота)

Растительные белки служат пищей для животных, в организме которых они превращаются в живые белки, либо выводятся из организма.

После гибели организма бактерии (микроорганизмы) других типом

В могут расщеплять белки до аминокислот и преобразовывать азот, входящий в состав аминокислот, в NH3 в результате процесса аммонификации - составная часть цикла.

Пример – микробиологическое разрушение глицина

При этом NH 3 (а в кислой среде ион NH 4+) возвращается в цикл, помогая восстановлению равновесия (в балансе азота)

Кроме того в природе постоянно протекают процессы денитрификации – преобразование NO 2- или NO 3- в газообразный азот (преимущественно) или N2O, выделяющийся по схеме.

Эти процессы под действие динитрифицирущих бактерий и распространены в почвах и водных системах с низким содержанием кислорода, т.е. в анаэробном окружении.

- в этих условиях безазотные органические вещества окисляются за счет нитратов и нитритов. Последние восстанавливаются до газообразного азота

Процессы денитрификации являются важными составными частями круговорота азота – они завершают круговорот возвращая в него фиксированный ранее азот. Таким образом при нормальных условиях полное количествоо фиксированного азота, возвращенного в окружающею среду равно полному количеству газообразного азота, возвращенного в окружающую среду

Схема цикла азота в биосфере может быть представлена следующей схемой:


Естественный круговорот азота характеризуется очень малой скоростью и сильно подвергается антропогенному воздействию. Оно состоит в значительном (во включении в цикл больших количеств) пополнении цикла азота прежде всего неорганических соединений азота в нитратной и аммонийной формах за счет использования азотных минеральных удобрений – искусственно синтезированных или извлеченных из природных залежей (азот, который выключен из круговорота)

Для обеспечения урожайности сельскохозяйственных культур ежегодно в почву в мире вносится около 35 млн. т. азота с минеральными удобрениями. В силу высокой подвижности (и слабой удерживаемости почвой) азот в нитратной форме легко вымывается из почв и выносится в водоемы.

Значительное количество азота поступает в окружающую среду (в почву, воду) с коммунально-бытовыми, производственными отходами, отходами животноводства

При сложившейся антропогенной нагрузке на азотный цикл деятельность денитрифицирующих бактерий отстает от темпов поступления азота в окружающую среду и в результате наблюдается накопление нитратов и промежуточных продуктов в окружающей среде, сопровождающееся загрязнением питьевой воды, почв, эвтрофикацией водоемов.

Круговорот Фосфора

Наличие фосфора (вместе с азотом) удовлетворяет основные потребности живых организмов в питательных веществах.

Круговорот фосфора проще чем азота и охватывает только литосферу и гидросферу. Газообразные соединения фосфора практически полностью отсутствуют в круговороте. Основным резервуаром фосфора являются горные породы и отложения, образовавшиеся в прошлые геологические эпохи. При этом водная систем является конечным пунктом его движения, которое таким образом в течение небольших отрезков времени – десятков-сотен лет – является односторонним с суши в воду и далее в донные отложения. Т.е. создается впечатление отсутствия цикличности в перемещении фосфора, она проявляется в масштабах геологического времени – миллионов лет

Естественное включение фосфора в круговорот происходит в результате выветривания иди другого нарушения фосфотических пород с последующи растворение соединений фосфора почвенной влагой которая доносит фосфор до корней растений. Антропогенный путь включения фосфора в цикл – внесение фосфатных минеральных удобрений. При этом основной способ получения соединений фосфора промышленным способом – апатит , фосфорит - (+ вторичное фосфорсодержащее сырье, шлаки, другие отходы)

Фосфор играет исключительно важную роль в биологических системах. Он в виде остатка фосфорной кислоты входит в состав молекул нуклеиновых кислот РНК и ДНК, ответственных за биосистему белков и передачу наследственной информации.

Скелет молекулы нуклеиновой кислоты – полиэфирная (точнее нуклеотидная) цепь, в которой сложноэфирная связь образуется между фосфорной кислотой и молекулой углевода (сахаром). В общем виде структура нуклеиновой кислоты выглядит след образом

В РНК – углеводный фрагмент Д-рибоза (пяти атомарный углевод) в фуранозной (циклической) форме:

Фосфор входит в состав АТФ (аденозинтрифосфосфата) и АДФ [аденозиндифосфата], который выполняет многие важные функции и биологических системах

АТФ активирует биохимические реакции (осуществляя фосфорилирование на промежуточных стадиях биохимсинтеза); при помощи АТФ запасается необходимая для биохимпроцессов, протекающих в организме, энергия.

Выделение энергии происходит при гидролизе АТФ, сопровождающаяся разрывом связи Р-О-Р концевой фосфатной группы

При этом освобождается энергия ~12 ккал/моль

В силу важнейшей роли фосфора в биологических процессах его нехватка с окружающей среде может быть фактором, лимитирующим процессы жизнедеятельности (это, кстати, имеет место во многих почвах, так как фосфаты встречаются в определенных типах пород) подобное явление имеет место в океанах – в мировом океане растворено определенное количество фосфора, главным образом – в глубинных слоях, куда не проникает свет и где фосфор не может ассимилироваться (усваиваться) водорослями, таким образом центральная роль океанов малопродуктивна, но в зонах где воды обогащены фосфором и есть свет биопродуктивность высока.

Упрощенная схема круговорота фосфора

В конце жизненного цикла фосфор в виде неорганического фосфата возвращается в систему замыкая круговорот.

Выводится из круговорота фосфор в основном путем осаждения в форме нерастворимых фосфатов железа в водной среде, накапливаясь в глубоководных донных осадках.

Вмешательство человека в круговорот фосфора проявляется в основном в увеличении избытка фосфат-ионов в водных системах при поступлении в них смытых с полей фосфорных удобрений, неочищенных коммунально-бытовых сточных вод, в состав которых входят фосфорсодержащие моющие вещества (полифосфаты – компоненты многих ПАВ). Избыток же фосфора в воде, ак и избыток азота способствует эвтрофикации водоемов.

Круговорот серы

Круговорот серы в окружающей среде сложен и до конца не прояснен. В природе сера встречается в виде самородной серы, но в основном в виде сульфидных и сульфатных минералов (FeS 2 , CuFeS 2 , CaSO 4 *2H 2 O и др.) т.е. преимущественно в СО -2 и +6. И в виде такого же типа минеральных примесей в твердых горючих ископаемых (уголь, горючие сланцы), в виде сульфатных солей и кроме того в виде Н 2 S – сопутствующего компонента природного газа некоторых месторождений. В природных круговорот включается сера из природных источников и в результате деятельности человека.

Из природных источников сера попадает в атмосферу в виде:

· H 2 S (извержение вулканов, разложение органического вещества в болотах);

· SO 2 (извержение вулканов)

· Аэрозольных частиц сульфатных солей (испарение брызг морской воды)

· (СH 3) 2 S - продуцирование микроорганизмами (микроводоросли и высшие растения)

H 2 S быстро окисляется в атмосфере до SO 2 (среднее время жизни H 2 S в атмосфере 2 сут.) тоже самое происходит и с диметилсульфидом.

Примерно 1/3 всех соединений серы и 99% SO 2, поступающих в окружающую среду, имеют антропогенное происхождение (сжигание серосодержащего топлива, цветная металлургия, производство серной кислоты)

SO 2 в среднем живет в атмосфере около 4 суток. он окисляется до SO 3 и взаимодействуя с водой образует H 2 SO 4 , является причиной выпадения кислотных дождей

H 2 SO 4 источник образования сульфатов, сульфаты поступают в почву или выносятся накапливаясь в конечном итоге в морских водах.

Сера является жизненно важным элементом. Она входит в состав 2-х аминокислот (метионина - незаменимая и цистеина ), т.е. включена в структуру некоторых белков.

Биосферный круговорот серы базируется на 2-х типах процессов

Основной тип процессов в биосфере, затрагивающих соединения серы – окислительные

(фотохимические процессы)

Химические и фотохимические процессы при доступе воздуха

В аэробных условиях сульфидные минералы достаточно легко окислятся до сульфатов и H 2 SO 4 кислородом воздуха

Восстановительные процессы, в которых участвуют соединения серы это в основном биохимические процессы.

В частности сера сульфатов, задерживающихся в почве, извлекается растениями и в результате биохимических превращений включается в состав белков (в тиольной группе, для большой группы микроорганизмов заменяет O 2 в качестве акцептора электронов при окислении органических соединений)

растительный белок → животный белок → микробиологические разложение в анаэробных условиях → H 2 S (H 2 S вновь включается в круговорот)

Таким образом основной биогенный компонент (продукт биохимических реакций) - H 2 S. Наряду с ним в атмосферу выделяется (СH 3) 2 S – образующийся в анаэробных условиях в результате жизнедеятельности ряда микроорганизмов в почве и некоторых высших растений, а так же морских микроорганизмов (продуцируется ими)

В упрощенном виде цикл серы в окружающей среде можно представить схемой

Особенность круговорота серы состоит в том, что восстановительные процессы не компенсируют окислительные , поскольку сульфидные соединения при контакте с воздухом и водой постоянно окисляются в сульфаты.

Точно так же и в антропогенных процессах природные сульфиды переводятся в сульфаты. Т.е. цикл превращений серы не просто круговорот, а кроме того - поступательный процесс, развивающийся в направлении перехода серы от одних устойчивых форм в другие (и.е. от более устойчивых в прежних исторических условиях сульфидов к более устойчивым в современных устойчивых сульфатам). При этом в современных период этот переход дополнительно ускорятся антропогенной деятельностью, приводящей к образованию и накоплению в биосфере продуктов окислительных процессов SO 2 (и H 2 SO 4), нарушающих жизнедеятельность лесных и водных экосистем.

В качестве итога к рассмотренным круговоротам веществ можно отметить следующее

Природные круговороты биогенных веществ имеют достаточно высокую степень замкнутости. Протоки биогенных элементов внутри круговоротов существенно превышают по величине потоки вещества в биосфере из внешних источников. Это очень важно, поскольку именно этот факт определяет устойчивость биосферы.

Дело в том что при замкнутости потока вещества из вне в биосфере могут сформироваться «ущербные экосистемы», включающие ограниченное число видов живых организмов (по существу потребители), н образующие экологические сообщества. Т.н. отдельные экосистемы буду деградировать и не будут стремится к развитию и поддержания разнообразия внутри них («работать не надо, всех долой, а что случись…»)

Это естественно несет опасность для разнообразия и устойчивости биосферы в целом, поскольку устойчивость прямо связана с разнообразием – как уже отмечалось, биосфера сложная система, а есть общее правило, которому подчиняются сложные системы, чем выше их внутреннее разнообразие, тем они устойчивее, тем в более сложджных условиях они способны существовать.

На разнообразие в биосфере (как условие поддержания ее устойчивости) оказывает влияние так же величина запасов в биосфере биогенных веществ в органической и неорганической фрмах, которые в принципе д.б. ограниченны и совпадать по порядку величины для того чтобы потоки веществ в процессах синтеза и разложения биосферой были уравновешены.

Основная опасность вмешательства человека в круговороты как раз и состоит в нарушении установившегося соотношения между величинами потоков веществ внутри круговоротов и внешних потоков.

Переходим к вопросам поведения химических веществ в окружающей среде

Закономерности распространения химических веществ в природные среде

Закономерности распространения химических веществ – одни из ключевых вопросов науки «ХОС» поскольку перемещение химических веществ от источника выброса и переход из одной среды в другую (миграция) главный фактор, обуславливающий химической загрязнение ОС (изменение ее состава и свойств). Химические загрязнения определяются так же и трансформацией веществ их первоначального состояния в другие формы под воздействием различных причин, но все же главный фактор – миграция.

Пути распространения веществ в окружающей среде в общем виде можно представить схемой:

От источника выброса химические вещества поступает в одну из сред, либо непосредственно в растительные организмы (ядохимикаты), из которых по пищевой цепи передается в животные организмы. Возможны также взаимные переходы химических веществ между каждой из сред.

Попадая в окружающую среду (в какую то часть) вещества могут мигрировать в пределах одной среды (геосферы) и также перемещаться через межфазные границы и переходить в другую среду.

Что влияет на процессы миграции в каждом случае и каковы эти процессы?

I. В пределах одной среды

- в водной среде – вещество может перемещаться будучи:

· в растворимом состоянии

· адсорбированном на поверхности взвешенных частиц.

Это перемещение (направление, скорость и т.п.) очевидно будет определятся гидрологическими параметрами.

- в атмосфере вещества могут находится в виде паров или сорбированном на частицах пыли.

Перемещение веществ в атмосфере определяется в таком случае метеорологическими параметрами (атмосферными течениями, зависящими от метеоусловий – распределение температуры, давлением в атмосфере, влажностью и т.п.)

- в почве - миграция несколько отличается от водной и воздушной сред – она осуществляется главным образом в результате диффузии в водной фазе почвы: с другой стороны частицы почвы сами могут перемещаться в атмосфере или воде, перенося сорбированные вещества - в этом случае перенос определяется теми же факторами, которые определяют движение воздуха или воды.

Кроме того играет роль конвективный массоперенос

Характер миграции (скорость, направление перемещения) ожжет измениться в результате трансформации вещества - перехода в другие химические формы под действием внешних условий. Например, в водной среде, почве большое влияние на поведение веществ оказывают кислотно-основные и окислительно-восстановительные условия, влияющие на растворимость вещества. Но если не принимать во внимание возможную трансформацию, то можно сделать вывод, что миграция конкретного в пределах одной среды определяется главным образом характеристиками переноса и физико-химическими условиями в данной среде. Влияние характеристик переносимого вещества при это незначительно.

II. Перемещение между сферами (через межфазные границы)

В этом случае основное значение имеют физико-химические свойства вещества (прежде всего те, которые определяют установление межфазного равновесия).

Коротко о процессах, определяющих межфазные переходы и основных факторах, которые имеют значение при определении возможности перемещения вещества через различные поверхности раздела фаз.

1. вода ↔ почва – перемещение через эту границу раздела играет важную роль, например, в процессе загрязнения вод в результате применения химических препаратов на сельскохозяйственных землях (которые затем вымываются из почвы дождями), а так же в процессе загрязнения почв, контактирующих с загрязненными водами.

Для всех переходов химических веществ через границу вода почва основную роль играет адсорбционно-десорбционные процессы (протекающие по различным механизмам – физическая адсорбция, хемосорбция). Таким образом этот переход по существу процесс адсорбции-десорбции. Это равновесные процессы ________ которых зависит от:

· растворимости вещества в воде;

· от свойств вещества, определяющих адсорбцию на твердой поверхности

2. вода ↔ воздух

Переход вещества из водного раствора в воздух – испарение – осуществляется в результате диффузии. Обратный процесс называется сухое осаждение в воду. Оба этих процесса относятся к динамическим (а не равновесным), имеют одинаковые закономерности, но противоположно направленные. На границе раздела фаз вода-воздух имеют значение прежде всего:

давление насыщенных паров вещества

· растворимость его в воде

3. почва ↔ воздух.

Переход из почвы в атмосферу – испарение из почвы, обратный переход – сухое осаждение в почву.

Миграционные процессы между этими средами наиболее сложны в силу сложности строения почвы. Почва – многофазная система, включая твердую фазу, жидкую и газообразную фазу. В свою очередь твердая фаза так же по химическому составу неоднородна и состоит из органических и минеральных составляющих. Таки образо здесь большое значение имеют обменные процессы ж/ТВ фаза, ж/газ, тв. фаза/газ.

Очевидно перенос вещества между средами почва ↔ воздух зависит:

· от свойств вещества, определяющих адсорбцию на часицах почвы

· давление насыщенных паров

· присутствие воды в почве, которая влияет на перемещение вещества на границе раздела фаз

4. физическая система ↔ биологическая система

граница раздела между этими системами существенно отличается от рассматриваемых систем. Здесь вещество, проникая в организм, проходит через биологическую (клеточную) мембрану, структура которой играет главную роль в переносе.

Геохимические барьеры

Миграция вещества в окружающей среде может привести в конечном итоге к его рассеянию или накоплению. Накопление вещества происходит в так называемых геохимических барьерах.

Геохимические барьеры – участки (части) биосферы, где происходит резкое замедление скорости миграции и, соответственно, накопление вещества, удерживание токсичных химических веществ в геохимических барьерах очищает потоки вещества и ограничивает сферу загрязнения.

Геохимические барьеры биосферы разделяет на 2 основных типа:

· Природные

· техногеные

Те и другие разделяются на участках изменения геохимической обстановки. В случае природных барьеров смена геохимической обстановки обусловлена природными особенностями конкретного участка биосферы, где формируется барьер. Техногенный барьер возникает при смене геохимической обстановки в результате антропогенной деятельности.

Оба типа барьеров разделяют на 3 класса:

· биогеохимические

· механические

· физико-химические.

Биогеохимические – возникают при интенсивном закреплении химических веществ живыми организмами. Примером биогеохимического барьера может быть накопление в высоких концентрациях сельскохозяйственными культурами веществ, используемых при отработке сельскохозяйственных земель. Обычно такое накопление происходит при внесении чрезмерных доз удобрений или ядохимикатов (средств защиты растений).

Механические барьеры – участки с резким уменьшением интенсивности механического перемещения химических веществ. Они возникают при изменении скорости воздушных или водных потоков, например, при изменении направления русла реки, при наличии плотины на реке.

Механический барьер может возникнуть вследствие фильтрационного эффекта – таким барьером могут быть пористые породы. Механическим барьером для дисперсных частиц в приземном слое атмосферы являются лесополосы, на которых откладывается, большое количество пыли, выдуваемой из почв при обработке сельскохозяйственных земель.

Физико-химические барьеры – возникают при изменении физико-химических условий среды, в которой перемещается вещество. В них подвижность веществ уменьшается за счет, например, адсорбция, изменение степени окисления, образование гидроксидов (или др. нерастворимых форм) и т.п.

Распространенным типом физико-химических барьеров является щелочные барьеры в роли которых выступают карбонатные породы, концентрирующие многие элементы. Примером техногенного физико-химического барьера могу служить часто встречающие сероводородные барьеры. Они формируются в водных объектах при наличии сульфат-ионов в воде и поступление значительного количества органических веществ, например, со сточными водами населенных пунктов. Органические вещества, разлагаясь, поглощают растворенный в воде свободный кислород, так что формируются анаэробные условия и в роли окислителя выступает ион SO 4 2- При этом сульфатная сера (S 6+) восстанавливается до сульфидной, а сульфид-ион связывает многие элементы (сульфиды большинства металлов нерастворимы). Это ведет к остановке миграции элементов в водной среде и их накопление в таком сероводородном барьере.

Геохимические барьеры не остаются неизменными. По мере накопления на барьерах различных веществ возможно разрушение исходных и образование новых барьеров. Например, карбонатные породы литосферы могут являться барьером для миграции Са 2+ - в них Са закрепляется, образуется нерастворимый кальцит СаСО 3 Но далее кальцит выступает как щелочной карбонатный барьер для многих элементов: Pb, Zn, Cd и др.

Геохимические барьеры обладают определенной емкостью по отношению к отдельным веществам, например емкость щелочного барьера в почвах определяется количеством карбонатов, способных нейтрализовать кислые техногенные потоки. Емкость сорбционного барьера зависит от свойств и мощности сорбирующего слоя. Емкость восстановительного и окислительного барьеров зависят от окислительно-восстановительных свойств среды (которые в значительной мере определяются микробиологической активностью).

Химической загрязнение окружающей среды главным образом определяется возможностью перемещения (миграции) химических веществ от источника выброса на значительные расстояния. Вещества могут распространятся в пределах одной среды, куда они поступают, но могут переходить и в другие среды, распространяясь в них. Перемещение веществ в окружающей среде происходит главным образом в результате процессов испарения, адсорбции, диффузии. При этом миграционная способность веществ зависит от ряда физико-химических свойств.

Приведем общую характеристику некоторых из этих свойств, определяющих перемещение веществ в окружающей среде и процессов миграции.

Наибольшее количество промышленных отходов образует угольная промышленность предприятия черной и цветной металлургии тепловые электростанции промышленность строительных материалов. В России к опасным отходам относят около 10 от всей массы твердых отходов. Огромное количество небольших захоронений радиоактивных отходов иногда забытых рассеяно по всему миру. Очевидно что проблема радиоактивных отходов со временем будет еще более острой и актуальной.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №10

АНТРОПОГЕННЫЕ ВОЗДЕЙСТВИЯ НА БИОТИЧЕСКИЕ СООБЩЕСТВА. ОСОБОЕ ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ

  1. Антропогенные воздействия на биотические сообщества
    1. Антропогенные воздействия на леса и другие растительные сообщества
    2. Антропогенные воздействия на животный мир
    3. Защита биотических сообществ

2. Особые виды воздействия на биосферу

  1. АНТРОПОГЕННЫЕ ВОЗДЕЙСТВИЯ НА БИОТИЧЕСКИЕ СООБЩЕСТВА

Нормальное состояние и функционирование биосферы, а следовательно, и стабильность окружающей природной среды невозможны без обеспечения благоприятной среды обитания для всех биотических сообществ во всем их многообразии. Утрата же биоразнообразия ставит под угрозу не только благополучие человека, но и само его существование. Антропогенные воздействия на главнейшие компоненты биотических сообществ рассмотрим в следующем порядке: растительный мир (леса и другие сообщества), животный мир.

1.1. Антропогенные воздействия на леса и другие растительные сообщества

Значение леса в природе и жизни человека

Леса — важная составная часть окружающей природной среды. Как экологическая система лес выполняет различные функции и одновременно является незаменимым природным ресурсом (рис. 1). Россия богата лесом: более 1,2 млрд га, или 75% от площади земельных угодий, занимают леса.

Многочисленные исследования как у нас в стране, так и за рубежом подтвердили исключительное значение лесов в сохранении экологического равновесия в природной среде. По мнению специалистов, значение средозащитной функции леса, т. е. сохранность генофонда флоры и фауны, на порядок выше их экономического значения как источника сырья и продуктов.

Влияние лесов на окружающую природную среду исключительно многообразно. Оно проявляется, в частности, в том, что леса: -

— являются основным поставщиком кислорода на планете;

— непосредственно влияют на водный режим как на занятых ими, так и на прилегающих территориях и регулируют баланс воды;

— снижают отрицательное воздействие засух и суховеев, сдерживают движение подвижных песков;

— смягчая климат, способствуют повышению урожаев сельскохозяйственных культур;

— поглощают и преобразовывают часть атмосферных химических загрязнений;

— защищают почвы от водной и ветровой эрозии, селей, оползней, разрушения берегов и других неблагоприятных геологических процессов;

— создают нормальные санитарно-гигиенические условия, благотворно влияют на психику человека, имеют огромное рекреационное значение.

Вместе с тем леса являются источником получения древесины и многих других видов ценного сырья. Из древесины производят более 30 тыс. изделий и продуктов, и потребление ее не уменьшается, а, наоборот, увеличивается. По расчетам специалистов, только в странах Западной Европы дефицит древесины к 2005 г. составит 220 млн м 3 .

Рис. 1. Значение леса в природе и жизни человека

По своему значению, местоположению и выполняемым функциям все леса подразделяют на три группы:

первая группа — леса, выполняющие защитные экологические функции (водоохранные, полезащитные, санитарно-гигиенические, рекреационные). Эти леса строго охраняются, особенно лесопарки, городские леса, особо ценные лесные массивы, национальные природные парки. В лесах этой группы допускаются только рубки ухода за лесом и санитарные рубки деревьев;

вторая группа — леса, имеющие защитное и ограниченное эксплуатационное значение. Распространены они в районах с высокой плотностью населения и развитой сетью транспортных путей. Сырьевые ресурсы лесов этой группы недостаточны, поэтому, чтобы сохранить их защитные и эксплуатационные функции, требуется строгий режим лесопользования;

третья группа — эксплуатационные леса. Распространены они в многолесных районах и являются основным поставщиком древесины. Заготовка древесины должна осуществляться без изменения естественных биотопов и нарушения естественного экологического равновесия.

Воздействие человека на леса

Воздействие человека на леса и вообще на весь растительный мир может быть прямым и косвенным. К прямому воздействию относятся: 1) сплошная вырубка лесов; 2) лесные пожары и выжигание растительности; 3) уничтожение лесов и растительности при создании хозяйственной инфраструктуры (затопление при создании водохранилищ, уничтожение вблизи карьеров, промышленных комплексов); 4) усиливающийся пресс туризма.

Косвенное воздействие — это изменение условий обитания в результате антропогенного загрязнения воздуха, воды, применения пестицидов и минеральных удобрений. Определенное значение имеет также проникновение в растительные сообщества чуждых видов растений (интродуцентов).

В XVII в. на Русской равнине площадь лесов достигала 5 млн км 2 , к 1970 г. их осталось не более 1,5 млн км 2 . В наши дни лес в России вырубают примерно на 2 млн га ежегодно. В то же время масштабы лесовосстановления с помощью посадок и посевов леса постоянно сокращаются. Для естественного восстановления леса после сплошной рубки требуются многие десятки лет, а для достижения климаксной фазы сотни лет.

Аналогичная ситуация наблюдается и в других странах. В еще более опасном положении находятся вечнозеленые влажные (дождевые) тропические леса — древние климаксные экосистемы. Это бесценное хранилище генетического многообразия исчезает с лица Земли примерно с огромной скоростью I 7 млн га в год. Ученые полагают, что при таких темпах влажные тропические леса, особенно в низменных равнинах, полностью исчезнут через несколько десятков лет. Их выжигают ради расчистки земли под пастбища, интенсивно вырубают как источник древесного топлива, выкорчевывают при неправильном ведении системы земледелия, затапливают при строительстве гидроэлектростанций, и т. д.

Пагубное влияние на лесные экосистемы оказывают лесные пожары. Возникают они в подавляющем большинстве случаев по вине людей, как следствие неосторожного обращения с огнем. В зонах тропических лесов пожары образуются в результате сознательного выжигания лесных массивов под пастбища и других сельскохозяйственных целей.

Пагубно на состояние лесов влияет выпадение кислотных дождей, образующихся в результате поступления от антропогенных источников оксидов серы и азота. В последние годы значительным фактором деградации лесов становится радиоактивное загрязнение.

Помимо лесов возросшее негативное воздействие человеческой деятельности проявляется и в отношении остального растительного ценоза (сосудистые растения, грибы, водоросли, лишайники, мохообразные и др.). Наиболее часто отрицательное воздействие человека на растительные сообщества проявляется при выкашивании, сборе лекарственных растений и ягод, стравлении скоту и других видах непосредственного использования. Множество различных видов растений гибнут при воздействии загрязняющими веществами, а также в процессе мелиоративной, строительной и сельскохозяйственной деятельности.

Экологические последствия воздействия человека на растительный мир

Масштабное антропогенное воздействие на биотические сообщества приводит к тяжелым экологическим последствиям как на экосистемно-биосферном, так и на популяционно-видо-вом уровнях.

На обезлесенных территориях возникают глубокие овраги, разрушительные оползни и сели, уничтожается фотосинтезирующая фитомасса, выполняющая важные экологические функции, ухудшается газовый состав атмосферы, меняется гидрологический режим водных объектов, исчезают многие растительные и животные виды и т. д.

Сведение крупных лесных массивов, особенно влажных тропических — этих, своеобразных испарителей влаги, по мнению многих исследователей, неблагоприятно отражается не только на региональном, но и на биосферном уровне. Уничтожение древесно-кустарниковой растительности и травянистого покрова на пастбищах в засушливых регионах ведет к их опустыниванию .

Еще одно негативное экологическое последствие сведения лесов — изменение альбедо земной поверхности . Альбедо (лат. albedo — белизна) — это величина, характеризующая способность поверхности отражать падающие на нее лучи. Альбедо земной поверхности — один из важных факторов, определяющих климат как в целом в мире, так и отдельных его регионов. Установлено, что серьезные изменения климата на планете могут быть вызваны изменением альбедо поверхности Земли всего лишь на несколько процентов. В настоящее время с помощью космических снимков обнаружено крупномасштабное изменение альбедо (так же как и теплового баланса) всей поверхности Земли. Ученые полагают, что это вызвано, прежде всего, уничтожением лесной растительности и развитием антропогенного опустынивания на значительной части нашей планеты.

Огромный вред состоянию естественных лесных экосистем наносят упомянутые выше лесные пожары, надолго, если не навсегда, замедляя процесс восстановления леса на сгоревших площадях. Лесные пожары ухудшают состав леса, уменьшают прирост деревьев, нарушают связи корней с почвой, усиливают буреломы, уничтожают кормовую базу диких животных, гнездовья птиц. В сильном пламени почва сжигается до такой степени, что в ней полностью нарушается влагообмен и способность к удержанию питательных веществ. Выжженная дотла территория нередко быстро заселяется различными насекомыми, что не всегда безопасно для людей из-за возможных вспышек инфекционных заболеваний.

Кроме описанных выше прямых воздействий человека на биотические сообщества важное значение имеют и косвенные, например загрязнение их промышленными выбросами.

Различные токсиканты, и в первую очередь диоксид серы, оксиды азота и углерода, озон, тяжелые металлы, весьма негативно влияют на хвойные и широколиственные деревья, а также на кустарники, полевые культуры и травы, мхи и лишайники, фруктовые и овощные культуры и цветы. В газообразном виде или в виде кислотных осадков они отрицательно действуют на важные ассимиляционные функции растений, органы дыхания животных, резко нарушают метаболизм и приводят к различным заболеваниям. Так, например, высокие дозы SO 2 или продолжительные воздействия его низких концентраций приводят к сильному ингибированию процессов фотосинтеза и снижению дыхания.

Крайне отрицательно на жизнедеятельности растений сказываются автомобильные выхлопные газы, содержащие 60% всех вредных веществ в городском воздухе и среди них такие токсичные, как оксиды углерода, альдегиды, неразложившие-ся углеводороды топлива, соединения свинца. Например, под их воздействием у дуба, липы, вяза уменьшается размер хлоропластов, сокращается число и размер листьев, сокращается продолжительность их жизни, уменьшается размер и плотность устьиц, общее содержание хлорофилла уменьшается в полтора-два раза.

На популяционно-видовом уровне негативное воздействие человека на биотические сообщества проявляется в утрате биологического разнообразия, в сокращении численности и исчезновении отдельных видов. В общей сложности во всем мире нуждаются в охране 25—30 тыс. видов растений, или 10% мировой флоры. Доля вымерших видов во всех странах составляет более 0,5 % общего числа видов флоры мира, а в таких регионах, как Гавайские острова, более 11%.

Сокращение числа видов сосудистых растений, к изменению видового состава экосистем. Это приводит к разрыву эволюционно сложившихся пищевых сетей и к дестабилизации экологической системы, что проявляется в ее разрушении и обедненности. Напомним, что сокращение площадей, покрытых зеленой растительностью, или ее разреживание крайне нежелательны по двум причинам: во-первых, нарушается глобальный круговорот углерода в биосфере и, во-вторых, снижается интенсивность поглощения солнечной энергии биосферой в процессе фотосинтеза.

1.2. Антропогенные воздействия на животный мир

Значение животного мира в биосфере

Животный мир — это совокупность всех видов и особей диких животных (млекопитающих, птиц, пресмыкающихся, земноводных, рыб, а также насекомых, моллюсков и других беспозвоночных), населяющих определенную территорию или среду и находящихся в состоянии естественной свободы.

Рис. 2. Значение животного мира в природе и жизни человека

Главнейшая экологическая функция животных — участие в биотическом круговороте веществ и энергии. Устойчивость экосистемы обеспечивается в первую очередь животными, как наиболее мобильным элементом.

Необходимо сознавать, что животный мир — не только важный компонент естественной экологической системы и одновременно ценнейший биологический ресурс. Очень важно и то, что все виды животных образуют генетический фонд планеты, все они нужны и полезны.

Воздействие человека на животных и причины их вымирания

В связи с постоянным истреблением животных человеком, мы наблюдаем упрощение как отдельных экосистем, так и биосферы в целом. Пока нет ответа на главный вопрос: каков возможный предел этого упрощения, за которым неизбежно должно последовать разрушение «систем жизнеобеспечения» биосферы.

Главные причины утраты биологического разнообразия, сокращения численности и вымирания животных следующие:

— нарушение среды обитания;

— чрезмерное добывание, промысел в запрещенных зонах;

— интродукция (акклиматизация) чуждых видов;

— прямое уничтожение с целью защиты продукции;

— случайное (непреднамеренное) уничтожение;

— загрязнение среды.

Нарушение среды обитания вследствие вырубки лесов, распашки степей и залежных земель, осушения болот, зарегулирования стока, создания водохранилищ и других антропогенных воздействий коренным образом меняет условия размножения диких животных, пути их миграции, что весьма негативно отражается на их численности и выживании.

Например, в г. Норильске прокладка газопровода без учета миграции оленей в тундре привела к тому, что животные стали сбиваться перед трубой в огромные стада, и ничто не могло их заставить свернуть с векового пути. В результате погибли многие тысячи животных.

Важным фактором, вызывающим снижение численности животных, является чрезмерное добывание. Например, запасы осетровых в Каспийском и Азовском морях подорваны настолько, что, по-видимому, придется вводить запрет на их промышленный лов. Основной причиной этого является браконьерство, которое повсеместно приняло масштабы, сопоставимые с промыслом.

Третьей по важности причиной сокращения численности и исчезновения видов животных является интродукция (акклиматизация) чуждых видов. Широко известны в нашей стране примеры негативного влияния американской норки на местный вид — европейскую норку, канадского бобра — на европейского, ондатры на выхухоль, и т. д.

Другие причины снижения численности и исчезновения животных — прямое их уничтожение для защиты сельскохозяйственной продукции и промысловых объектов (гибель хищных птиц, сусликов, ластоногих, койотов и др.); случайное (непреднамеренное) уничтожение (на автомобильных дорогах, в ходе военных действий, при кошении трав, на линиях электропередач, при зарегулировании водного стока и т. д.); загрязнение среды (пестицидами, нефтью и нефтепродуктами, атмосферными загрязнителями, свинцом и другими токсикантами).

1.3. Защита биотических сообществ

Защита растительного мира

Для сохранения численности и популяционно-видового состава растений осуществляется комплекс природоохранных мер, в число которых входят:

— борьба с лесными пожарами;

— защита растений от вредителей и болезней;

— полезащитное лесоразведение;

— повышение эффективности использования лесных ресурсов;

— охрана отдельных видов растений и растительных сообществ.

Борьба с лесными пожарами . Для этих целей используют самолеты, вертолеты, мощные пожарные автоцистерны, опрыскиватели, вездеходы, бульдозеры и т. д. В борьбе с лесными пожарами большую роль играют и другие меры защиты, в частности создание противопожарных барьеров-разрывов, специальных полос и др. Главные усилия следует направлять на профилактику пожаров: проведение разъяснительной работы среди населения.

Полезащитное лесоразведение . Искусственно выращенные лесные полосы, сформированные из быстрорастущих биологически устойчивых пород для поддержания биологического равновесия, создают по границам полей и севооборотов, снаружи и внутри садов, на пастбищах и т. д. Лесонасаждения положительно влияют на окружающую природную среду и способствуют защите сельскохозяйственных полей, пастбищных трав, плодовых деревьев, кустарников, виноградников от вымерзания, вредного действия ветров, пыльных бурь, засух и суховеев.

Повышение эффективности использования лесных ресурсов . В комплекс мероприятий данного назначения входят перебазирование лесозаготовок и лесоперерабатывающих предприятий в многолесные районы, ликвидация перерубов в малолесных районах, сокращение потерь древесины првг сплаве и перевозках и др. Для сохранения численности и по-пуляционно-видового состава лесов необходимо также проведение в достаточных объемах лесовоестановительных работ с целью восстановления лесов до стадии климакса, улучшение их состава, дальнейшее развитие сети лее-ных питомников и разработка методов выращивания леса на специальных плантациях.

Охрана отдельных видов растений и растительных сообществ . Обычно выделяют два аспекта, связанных с охраной растительного мира: 1) охрана редких и исчезающих видов флоры и 2) охрана основных растительных сообществ. К редким относят растительные виды, имеющие ограниченный ареал и низкую численность. Правительственными постановлениями взяты под защиту десятки редких видов растений. В местах их произрастания строго запрещается сбор, выпас скота, сенокошение и другие формы уничтожения растений и их сообществ.

Очень важной задачей является сохранение в качестве генофонда видового разнообразия растений. В случае, когда исчерпаны все резервы сохранения видов растений, создают специальные хранилища — генетические банки, где генофонд видов сохраняется в виде семян.

Охрана животного мира

Охрана и эксплуатация охотничьих животных, морских зверей и промысловых рыб должна предусматривать разумную добычу, но не их истребление. Помимо организованного промысла и охоты на охотничьих угодьях, которые занимают в России огромные площади, проводят биотехнические мероприятия. Их назначение: сохранение и увеличение емкости охотничьих угодий, а также увеличение численности и обогащение видов промысловых животных. Широко используется также акклиматизация животных, т. е. вселение их в новые места обитания с целью обогащения экосистем новыми полезными видами. Наряду с акклиматизацией диких животных практикуется л реакклиматизация, т. е. расселение животных в прежнее места обитания, где ранее они находились, но были истреблены.

Одним из механизмов регулирования процесса использования животных и растительных ресурсов является создание «Красной книги», содержащей сведения о редких, исчезающих или находящихся под угрозой исчезновения видов растений, животных и других организмов с целью введения режима их особой охраны и воспроизводства. Существует несколько вариантов Красных книг: международная, федеральная и республиканская (областная).

По степени угрозы для существования все животные и растения разбиты на 5 групп: исчезнувшие, под угрозой исчезновения, сокращающийся в численности, редкий, восстановленные виды. Ежегодно в Международную Красную книгу вносятся изменения и новые виды, нуждающиеся в особой заботе.

Следующий инструмент регулирования – создание особо охраняемых природных территорий, участков суши или водной поверхности, которые в силу своего природоохранного и иного значения, полностью или частично изъяты из хозяйственного пользования и для которых установлен режим особой охраны.

Различают следующие основные категории указанных территорий:

а) государственные природные заповедники, в том числе биосферные - участки территории, которые полностью изъяты из обычного хозяйственного использования с целью сохранения в естественном состоянии природного комплекса

б) национальные парки - это относительно большие природные территории и акватории, где обеспечивается выполнение трех основных целей: экологической (поддержание экологического баланса и сохранение природных экосистем), рекреационной (регулируемый туризм и отдых людей) и научный (разработка и внедрение методов сохранения природного комплекса в условиях массового допуска посетителей);

в) природные парки— территории, отличающиеся особой экологической и эстетической ценностью, с относительно мягким охранным режимом и используемые преимущественно для организованного отдыха населения;

г) государственные природные заказники - территории, созданные на определенный срок (в ряде случаев постоянно) для сохранения или восстановления природных комплексов или их компонентов и поддержания экологического баланса. В заказниках сохраняют и восстанавливают плотности популяций одного или нескольких видов животных или растений, а также природные ландшафты, водные объекты и др.

д) памятники природы - уникальные, невоспроизводимые природные объекты, имеющие научную, экологическую, культурную и эстетическую ценность (пещеры, небольшие урочища, вековые деревья, скалы, водопады и др.).

е) дендрологические парки и ботанические сады— природоохранные учреждения, в задачу которых входит создание коллекции деревьев и кустарников с целью сохранения биоразнообразия и обогащения растительного мира, а также в научных, учебных и культурно-просветительных целях. В дендрологических парках и ботанических садах осуществляются также работы по интродукции и акклиматизации новых для данного региона растений.

2. ОСОБЫЕ ВИДЫ ВОЗДЕЙСТВИЯ НА БИОСФЕРУ

2.1. Виды воздействия особых факторов на окружающую среду

К числу особых видов антропогенного воздействия на биосферу относят:

1) загрязнение среды опасными отходами;

2) шумовое воздействие;

3) биологическое загрязнение;

4) воздействие электромагнитных полей и излучений и некоторые другие виды воздействий.

Загрязнение среды отходами производства и потребления

Одной из наиболее острых экологических проблем в настоящее время является загрязнение окружающей природной среды отходами производства и потребления и в первую очередь опасными отходами. Сконцентрированные в отвалах, хвостохранилищах, терриконах, несанкционированных свалках отходы являются источником загрязнения атмосферного воздуха, подземных и поверхностных вод, почв и растительности. Все отходы подразделяют на бытовые и промышленные (производственные).

Твердые бытовые отходы (ТБО) — совокупность твердых веществ (пластмасса, бумага, стекло, кожа и др.) и пищевых отбросов, образующихся в бытовых условиях. Промышленные (производственные) отходы (ОП) — это остатки сырья, материалов, полуфабрикатов, образовавшихся при производстве продукции или выполнении работ и утратившие полностью или частично исходные потребительские свойства. Промышленные отходы, так же как и бытовые, из-за недостатка полигонов захоронения в основном вывозятся на несанкционированные свалки. Обезвреживается и утилизируется только 1/5 часть.

Наибольшее количество промышленных отходов образует угольная промышленность, предприятия черной и цветной металлургии, тепловые электростанции, промышленность строительных материалов.

Под опасными отходами понимают отходы, содержащие в своем составе вещества, которые обладают одним из опасных свойств (токсичность, взрывчатость, инфекционность, пожароопасность и т. д.) и присутствуют в количестве, опасном для здоровья людей и окружающей природной среды. В России к опасным отходам относят около 10% от всей массы твердых отходов. Среди них металлические и гальванические шламы, отходы стекловолокна, асбестовые отходы и пыль, остатки от переработки кислых смол, дегтя и гудронов, отработанные радиотехнические изделия и т. д. Наибольшую угрозу для человека и всей биоты представляют опасные отходы, содержащие химические вещества I и П класса токсичности. В первую очередь — это отходы, в составе которых присутствуют радиоактивные изотопы, диоксины, пестициды, бенз(а)пирен и некоторые другие вещества.

Радиоактивные отходы (РАО) — твердые, жидкие или газообразные продукты ядерной энергетики, военных производств, других отраслей промышленности и систем здравоохранения, содержащие радиоактивные изотопы в концентрации, превышающей утвержденные нормы.

Радиоактивные элементы, например стронций-90, передвигаясь по пищевым (трофическим) цепям, вызывают стойкие нарушения жизненных функций, вплоть до гибели клеток и всего организма. Некоторые из радионуклидов могут сохранять смертоносную токсичность в течение 10—100 млн лет.

Огромное количество небольших захоронений радиоактивных отходов (иногда забытых) рассеяно по всему миру. Так, только в США их выявлено несколько десятков тысяч, из которых многие являются активными источниками радиоактивного излучения.

Очевидно, что проблема радиоактивных отходов со временем будет еще более острой и актуальной. В ближайшие 10 лет потребуется демонтаж большого количества АЭС в силу их устареванию. При их демонтаже потребуется обезвредить огромное количество низкоактивных отходов и обеспечить захоронение более 100 тыс. т высокоактивных. Актуальны и проблемы, связанные со списанием кораблей ВМФ с ядерными силовыми установками.

Диоксинсодержащие отходы образуются при сжигании промышленного и городского мусора, бензина со свинцовыми присадками и как побочные продукты в химической, целлюлозно-бумажной и электротехнической промышленности. Установлено, что диоксины образуются также при обезвреживании воды хлорированием, в местах хлорного производства, в особенности при производстве пестицидов.

Диоксины — синтетические органические вещества из класса хлоруглеводородов. Диоксины 2, 3, 7, 8, — ТХДД и диоксиноподобные соединения (более 200) — самые токсичные из полученных человеком веществ. Они обладают мутагенным, канцерогенным, эмбриотоксическим действием; подавляют иммунную систему («диоксиновый СПИД») и в случае получения человеком через продукты питания или в виде аэрозолей достаточно высоких доз вызывают «синдром изнурения» — постепенное истощение и смерть без явно выраженных патологических симптомов. Биологическое действие диоксинов проявляется уже в исключительно низких дозах.

Впервые в мире диоксиновая проблема возникла в США в 30—40 гг. В России производство этих веществ началось вблизи г. Куйбышева и в г. Уфе в 70-е гг., где выпускался гербицид и другие диоксинсодержащие консерванты древесины. Первое крупномасштабное диоксиновое загрязнение окружающей среды зарегистрировано в 1991 г. в районе г. Уфы. Содержание диоксинов в водах р. Уфа более чем в 50 тыс. раз превысило их предельно допустимые концентрации (Голубчиков, 1994). Причина загрязнения воды — поступление фильтрата из уфимской городской свалки промышленных и бытовых от ходов, где по оценочным данным было законсервировано более 40 кг диоксинов. Как следствие, содержание диоксинов в крови, жировой ткани и грудном молоке многих жителей Уфы и Стерлитамака увеличилось в 4—10 раз по сравнению с допустимым уровнем.

Серьезную экологическую опасность для человека и биоты представляют также отходы, содержащие пестициды, бенз(а)пи-рен и другие токсиканты. Кроме того, следует учитывать, что за последние десятилетия человек, качественно изменив химическую обстановку на планете, включил в круговорот совершенно новые, весьма токсичные вещества, экологические последствия от использования которых еще не изучены.

Шумовое воздействие

Шумовое воздействие — одна из форм вредного физического воздействия на окружающую природную среду. Загрязнение среды шумом возникает в результате недопустимого превышения естественного уровня звуковых колебаний. С экологической точки зрения в современных условиях шум становится не просто неприятным для слуха, но и приводит к серьезным физиологическим последствиям для человека. В урбанизированных зонах развитых стран мира от действия шума страдают десятки миллионов людей.

В зависимости от слухового восприятия человека упругие колебания в диапазоне частот от 16 до 20 000 Гц называют звуком, менее 16 Гц — инфразвуком, от 20 000 до 1 10 9 — ультразвуком и свыше 1 10 9 — гиперзвуком. Человек способен воспринять звуковые частоты лишь в диапазоне 16—20 000 Гц.

Единица измерения громкости звука, равная 0,1 логарифма отношения данной силы звука к пороговой (воспринимаемой ухом человека) его интенсивности, называется децибелом (дБ). Диапазон слышимых звуков для человека составляет от 0 до 170 дБ.

Естественные природные звуки на экологическом благополучии человека, как правило, не отражаются. Звуковой дискомфорт создают антропогенные источники шума, которые повышают утомляемость человека, снижают его умственные возможности, значительно понижают производительность труда, вызывают нервные перегрузки, шумовые стрессы и т. д. Высокие уровни шума (> 60 дБ) вызывают многочисленные жалобы, при 90 дБ органы слуха начинают деградировать, 110—120 дБ считается болевым порогом, а уровень антропогенного шума свыше 130 дБ — разрушительный для органа слуха предел. Замечено, что при силе шума в 180 дБ в металле появляются трещины.

Основные источники антропогенного шума — транспорт (автомобильный, рельсовый и воздушный) и промышленные предприятия. Наибольшее шумовое воздействие на окружающую среду оказывает автотранспорт (80% от общего шума).

Многочисленные эксперименты и практика подтверждают, что антропогенное шумовое воздействие неблагоприятно сказывается на организме человека и сокращает продолжительность его жизни, ибо привыкнуть к шуму физически невозможно. Человек может субъективно не замечать звуки, но от этого разрушительное действие его на органы слуха не только не уменьшается, но и усугубляется.

Неблагоприятно влияет на питание тканей внутренних органов и на психическую сферу человека и звуковые колебания с частотой менее 16 Гц (инфразвуки). Так, например, исследования, проведенные датскими учеными, показали, что инфразвуки вызывают у людей состояние, аналогичное морской болезни, особенно при частоте менее 12 Гц.

Шумовое антропогенное воздействие небезразлично и для животных. В литературе имеются данные о том, что интенсивное звуковое воздействие ведет к снижению удоев, яйценоскости кур, потере ориентирования у пчел и к гибели их личинок, преждевременной линьке у птиц, преждевременным родам у зверей, и т. д. В США установлено, что беспорядочный шум мощностью 100 дБ приводит к запаздыванию прорастания семян и к другим нежелательным эффектам.

Биологическое загрязнение

Под биологическим загрязнением понимают привнесение в экосистемы в результате антропогенного воздействия нехарактерных для них видов живых организмов (бактерий, вирусов и др.), ухудшающих условия существования естественных биотических сообществ или негативно влияющих на здоровье человека.

Основными источниками биологического воздействия являются сточные воды предприятий пищевой и кожевенной промышленности, бытовые и промышленные свалки, кладбища, канализационная сеть, поля орошения и др. Из этих источников разнообразные органические соединения и патогенные микроорганизмы попадают в почву, горные породы и подземные воды.

Полученные в последние годы данные позволяют говорить об актуальности и многогранности проблемы биобезопасности. Так, новая экологическая опасность создается в связи с развитием биотехнологии и генной инженерии. При несоблюдении санитарных норм возможно попадение из лаборатории или завода в окружающую природную среду микроорганизмов и биологических веществ, оказывающих весьма вредное воздействие на биотические сообщества, здоровье человека и его генофонд.

Помимо генно-инженерных аспектов, среди актуальных вопросов биобезопасности, имеющих важное значение для сохранения биоразнообразия, выделяют также:

— перенос генетическе информации от домашних форм к диким видам-

— генетический обмен между дикими видами и подвидами, в том числе риск генетического загрязнения генофонда редких и исчезающих видов;

— генетические и экологические последствия преднамеренной и непреднамеренной интродукции животных и растений.

Воздействие электромагнитных полей и излучений

На нынешнем этапе развития научно-технического прогресса человек вносит существенные изменения в естественное магнитное поле, придавая геофизическим факторам новые направления и резко повышая интенсивность своего воздействия. Основные источники этого воздействия — электромагнитные поля от линий электропередач (ЛЭП) и электромагнитные поля от радиотелевизионных и радиолокационных станций.

Отрицательное воздействие электромагнитных полей на человека и на те или иные компоненты экосистем прямо пропорционально мощности поля и времени облучения. Неблагоприятное воздействие электромагнитного поля, создаваемого ЛЭП, проявляется уже при напряженности поля, равной 1000 В/м. У человека нарушаются эндокринная система, обменные процессы, функции головного и спинного мозга и др.

Воздействие неионизирующих электромагнитных излучений от радиотелевизионных и радиолокационных станций на среду обитания человека связано с формированием высокочастотной энергии. Японскими учеными обнаружено, что в районах, расположенных вблизи мощных излучающих теле- и радиоантенн, заметно повышается заболевание катарактой глаз.

В целом можно отметить, что неионизирующие электромагнитные излучения радиодиапазона от радиотелевизионных средств связи, радиолокаторов и других объектов приводят к значительным нарушениям физиологических функций человека и животных.

2.2 Защита окружающей природной среды от особых видов воздействий

Защита от отходов производства и потребления

В данном разделе используются следующие основные понятия:

утилизация (от лат. utilis — полезный) отходов — извлечение и хозяйственное использование различных полезных компонентов;

захоронение отходов — размещения на специальных площадках постоянного хранения.

Детоксикация (обезвреживание) отходов — освобождение их от вредных (токсичных) компонентов на специализированных установках.

В настоящее время и по масштабам накопления и по степени негативного воздействия на окружающую среду экологической проблемой века становятся опасные отходы. Поэтому их сбор, удаление, детоксикация, переработка и утилизация — одна из главнейших задач инженерной защиты окружающей природной среды.

Важнейшей проблемой является защита среды обитания и от обычных, т. е. нетоксичных отходов. На урбанизированных территориях размещение отходов уже сейчас выходит на первое место по своей значимости среди экологических проблем. Рассмотрим, как в настоящее время осуществляют защиту окружающей среды от твердых бытовых и промышленных, а также от радиоактивных и диоксинсодержащих отходов.

В отечественной и мировой практике наибольшее распространение получили следующие методы переработки твердых бытовых отходов (ТБО):

— строительство полигонов для захоронения и частичной их переработки;

— сжигание отходов на мусоросжигательных заводах;

— компостирование (с получением ценного азотного удобрения или биотоплива);

— ферментация (получение биогаза из животноводческих стоков, и др.);

— предварительная сортировка, утилизация и реутилизация ценных компонентов;

— пиролиз (высокомолекулярный нагрев без доступа воздуха) ТБО при температуре 1700 °С.

По оценке ряда специалистов, на нынешней стадии развития производства, которое в целом характеризуется преобладанием ресурсопотребляющих технологий и огромным накоплением отходов, наиболее приемлемым методом следует признать строительство полигонов для организованного и санкционированного хранения отходов и частичной их переработки (в основном методом прямого сжигания). Срок полного обезвреживания отходов — 50—100 лет.

Одним из перспективных методов переработки твердых бытовых пищевых отходов является их компостирование с аэробным окислением органического вещества. Полученный компост используют в сельском хозяйстве, а некомпостируемые бытовые отходы поступают в специальные печи, где термически разлагаются и превращаются в разные ценные продукты — например в смолу.

Другой, менее распространенный метод переработки твердых бытовых отходов (ТБО) — сжигание их на мусоросжигательных заводах. На сегодняшний день в России работает небольшое число таких заводов (Москва-2, Владивосток, Сочи, Пятигорск, Мурманск и др.). На этих заводах спекание отходов происходит при t = 800—850 °С. Вторая стадия газовой очистки отсутствует, поэтому в золе отработанных отходов отмечается повышенная концентрация диоксинов (0,9 мкг/кг и более). С каждого кубометра сжигаемых отходов в атмосферу выбрасывается 3 кг ингредиентов (пыль, сажа, газы) и остается 23 кг золы. На ряде зарубежных мусоросжигательных заводов реализуется более экологичная двухстадийная очистка отходящих газов, в их составе регламентируется очистка более десяти вредных компонентов, включая дибензодиоксин и дибензофураны (на отечественных заводах — четыре компонента). Режим сжигания предусматривает разложение отходов, в том числе образующихся из пластмасс диоксинов при температуре 900— 1000 °С.

На заводах по пиролизу ТБО при температуре 1700 °С практически утилизируются все материальные и энергетические компоненты, что резко снижает загрязнение окружающей среды. Однако технологический процесс очень трудоемкий, по существу, завод по пиролизу — это доменная печь.

К новейшим отечественным разработкам относится технология комплексной переработки ТБО, предложенная НИИ ресурсосбережения. Технология предусматривает предварительную механизированную сортировку ТБО (извлечение черных и цветных металлов, выделение части балластных компонентов — стеклобоя, бытовых электробатареек, выделение текстильных компонентов и др., для последующего их использования или ликвидации).

Термообработка обогащенной и подсушенной фракции мусора осуществляется при температуре до 1000 0 С, обогащенные шлаки перерабатываются и сжигаются в камни строительного назначения, предусматривается двухстадийная современная газоочистка.

Мусороперерабатывающий завод нового типа, работающий по данной комбинированной технологии, дает всего 15% отходов.

И все же следует подчеркнуть, что и у нас в стране и за рубежом основная масса твердых бытовых отходов (ТБО) из-за нехватки полигонов вывозится в пригородные зоны и выбрасывается на свалки. Экологическое состояние свалок явно неудовлетворительное: отходы на них разлагаются, часто загораются и отравляют воздух токсичными веществами, а дождевые и талые воды, просачиваясь через толщу горных пород, загрязняют грунтовые воды.

Токсичные твердые промышленные отходы обезвреживают на специальных полигонах и сооружениях. Для предотвращения загрязнения почв и подземных вод отходы подвергают отверждению цементом, жидким стеклом, битумом, обработке полимерными вяжущими и т. д.

В случае особо токсичных промышленных отходов их захоронение производят на специальных полигонах (рис. 20.19; по С. В. Белову и др., 1991) в котлованах глубиной до 12 м в специальной таре и рабочих железобетонных емкостях.

Очень сложной и пока еще не решенной проблемой является обезвреживание и захоронение радиоактивных и диоксин-содержащих отходов. Общепризнано, что избавление человечества от этих отходов — одна из самых острых экологических проблем.

Наиболее разработаными методами утилизации муниципальных радиоактивных отходов, т. е. отходов, не связанных с деятельностью АЭС и военно-промышленного комплекса, являются цементирование, остекловывание, битуминирование, сжигание в керамических камерах и последующее перемещение продуктов переработки в специальные хранилища («могильники»). На специальных комбинатах и пунктах захоронения радиоактивные отходы сжигают до минимальных размеров в прессовочной камере. Полученные брикеты помещают в пластиковые бочки, заливают цементным раствором и отправляют в хранилища («могильники»), врытые в землю на 5—10 м. По другой технологии — их сжигают, превращают в пепел (золу), упаковывают в бочки, цементируют и отправляют в хранилища.

Для утилизации жидких радиоактивных отходов используют методы остекловывания, битуминирования и др. При остекловывании при температуре 1250—1600 °С образуются гранулированные стекла, которые также заковывают в цемент и в бочки, а затем отправляют в хранилища. Однако, по мнению многих специалистов, долговечность бочек-контейнеров сомнительна.

Тем не менее практически все существующие способы утилизации и захоронения радиоактивных отходов не решают проблему кардинально и, как отмечает А. Я. Яблоков (1995), не видно приемлемых путей их решения.

Активная борьба с другими весьма опасными диоксинсодержащими отходами ведется в нашей стране: разработаны и внедрены (на водопроводах Уфы и Москвы) технологии очистки воды от диоксинов сорбцией на гранулированных активных углях (ГАУ). Проблема борьбы с диоксинами осложняется отсутствием в достаточном количестве современной аналитической аппаратуры, малым числом специальных лабораторий, недостаточной обученностью персонала, высокой стоимостью приборов зарубежных фирм и т. д.

Защита от шумового воздействия

Как и все другие виды антропогенных воздействий, проблема загрязнения среды шумом имеет международный характер.

Защита от шумового воздействия — очень сложная проблема и для ее решения необходим комплекс мер: законодательных, технико-технологических, градостроительных, архитектурно-планировочных, организационных и др.

Для защиты населения от вредного влияния шума нормативно-законодательными актами регламентируется его интенсивность, время действия и другие параметры.

Технико-технологические меры сводятся к шумозащите, под которой понимают комплексные технические меры по снижению шума на производстве (установка звукоизолирующих кожухов станков, звукопоглощение и др.), на транспорте (глушители выбросов, замена колодочных тормозов на дисковые, шу-мопоглощающий асфальт и др.).

На градостроительном уровне защита от шумового воздействия может быть достигнута следующими мероприятиями:

— зонированием с выносом источников шумов за пределы застройки;

— организацией транспортной сети, исключающей прохождение шумных магистралей через районы жилой застройки;

— удаление источников шума и устройством защитных зон вокруг и вдоль источников шумового воздействия и организация зеленых насаждений;

— прокладкой магистралей в туннелях, устройством шумозащитных насыпей и других поглощающих шум препятствий на путях распространения шума (экраны, выемки, ковальеры);

Архитектурно-планировочные меры предусматривают создание шумозащитных зданий, т. е. таких зданий, которые обеспечивают помещениям нормальный акустический режим с помощью конструктивных, инженерных и других мер (герметизация окон, двойные двери с тамбуром, облицовка стен звукопоглощающими материалами и др.).

Определенный вклад в защиту среды от шумового воздействия вносит запрещение звуковых сигналов автотранспорта, авиаполетов над городом, ограничение (или запрещение) взлетов и посадок самолетов в ночное время и другие организационные меры .

Защита от электромагнитных полей и излучений

Основной способ защиты населения от возможного вредного воздействия электромагнитных полей от линий электропередач (ЛЭП) — создание охранных зон шириной от 15 до 30 м в зависимости от напряжения ЛЭП. Данная мера требует отчуждения больших территорий и исключения их из пользования в некоторых видах хозяйственной деятельности.

Уровень напряженности электромагнитных полей снижают также с помощью устройства различных экранов, в том числе из зеленых насаждений, выбора геометрических параметров ЛЭП, заземления тросов и других мероприятий. В стадии разработки находятся проекты замены воздушных линий ЛЭП на кабельные и подземной прокладки высоковольтных линий.

Для защиты населения от неионизирующих электромагнитных излучений, создаваемых радиотелевизионными средствами связи и радиолокаторами, также используется метод защиты расстоянием. С этой целью устраивают санитарно-защитную зону, размеры которой должны обеспечить предельно допустимый уровень напряженности поля в населенных местах. Коротковолновые радиостанции большой мощности (свыше 100 кВт) размещают вдали от жилой застройки, вне пределов населенного пункта.

Защита от биологического воздействия

Предупреждение, своевременное выявление, локализация и устранение биологического загрязнения достигается комплексными мерами, связанными с противоэпидемической защитой населения. В число мер входят санитарная охрана территории, введение в необходимых случаях карантина, постоянный эпиднадзор за циркуляцией вирусов, эколого-эпидемиологические наблюдения, слежение и контроль за очагами опасных вирусных инфекций.

С позиции биобезопасности существенно важно также предварительное обоснование и прогнозирование возможных последствий, в частности, интродукции и акклиматизации новых для данной территории видов растений и животных.

Запрещается применение и разведение биологических объектов, не свойственных природе соответствующего региона, а также полученных искусственным путем, без разработки мер предотвращения их неконтролируемого размножения. В организационном плане требуются срочные меры по организации в России вирусологической службы.

Важное значение для обеспечения биобезопасности и сохранения биоразнообразия имеют также профилактические меры по недопущению переноса генетической информации от домашних форм к диким видам и сокращению риска генетического загрязнения генофонда редких и исчезающих видов.

Другие похожие работы, которые могут вас заинтересовать.вшм>

11286. ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ 34.92 KB
Местными программами действий по охране природной среды предусматриваются меры по достижению реальных позитивных конфигураций охраны естественной среды и усовершенствования общественно-финансового состояния людей путем осуществления мер по сохранению состояния находящейся вокруг среды
19940. Воздействие металлургических предприятий на окружающую среду 225.32 KB
Предприятия черной металлургии «специализируются», прежде всего, на оксиде углерода, которого выбрасывают в воздух по 1,5 млн. тонн в год. Производители цветных металлов больше «предпочитают» диоксид серы, которым обогащают атмосферный воздух на 2,5 млн. тонн ежегодно. Всего металлургические предприятия выбрасывают в атмосферу 5,5 млн. тонн загрязняющих веществ. Все это в итоге выпадает на головы жителей крупных металлургических центров. Существуют регионы, для которых присутствие металлургического комбината становится главной
7645. ТОКСИЧНОСТЬ ОТРАБОТАВШИХ ГАЗОВ И МЕТОДЫ СНИЖЕНИЯ ОТРИЦАТЕЛЬНОГО ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ 74.61 KB
Токсическими компонентами отработавших газов являются: окись углерода; окись и двуокись азота; сернистый газ и сероводород; кислородосодержащие вещества в основном альдегиды; углеводороды бензапирен является наиболее токсичным углеводородом превосходящим даже СО; соединения свинца и т. Кроме токсических составляющих отработавших газов в атмосферу в двигателях с искровым зажиганием выбрасываются картерные газы пары бензина из бака и карбюратора. Таблица Удельное содержание вредных веществ в отработавших газах Вещества г кВтч...
1129. ВЛИЯНИЕ ОБЪЕКТОВ СТРОИТЕЛЬСТВА НА ОКРУЖАЮЩУЮ СРЕДУ 24.24 KB
Определить функцию ошибки среднеквадратичное отклонение меру ошибки регрессионной модели. Построить линейную регрессионную модель и меру ошибки регрессионной модели. Искомое уравнение линейной регрессии имеет вид: Ошибка ei для каждой экспериментальной точки определяется как расстояние по вертикали от этой точки до линии регрессии ei Функция ошибки: Обычно мерой ошибки регрессионной модели служит среднее квадратичное отклонение: Для нормально распределенных процессов приблизительно 80 точек находится в пределах...
8876. Антропогенные воздействия на гидросферу и литосферу 191.31 KB
Антропогенные воздействия на гидросферу Загрязнение гидросферы Существование биосферы и человека всегда было основано на использовании воды. Человечество постоянно стремилось к увеличению водопотребления оказывая на гидросферу огромное и многообразное давление. На нынешнем этапе развития техносферы когда в мире еще в большей степени возрастаем воздействие человека на гидросферу это выражается в проявлении такого страшного зла каким является химическое и бактериальное загрязнение вод.
18270. Влияние автомобильного транспорта на городскую окружающую среду 754.33 KB
В этой связи выгодное географическое расположение Казахстана целесообразно использовать для прохождения грузопотоков между Европой и Азией что содействует увеличению доходов в бюджеты транспортных компаний и госбюджет Казахстана. К концу века возникла повсеместно проявила себя и накрепко обосновалась новая угроза жизненно важным интересам личности общества государства - реальная экологическая опасность для жизнедеятельности связанная с достигшим гигантских масштабов уровнем автомобилизации. Для сравнения: окружность Земли по экватору...
20361. ВЛИЯНИЕ ПЕРВОМАЙСКОГО ЦЕМЕНТНОГО ЗАВОДА НА ОКРУЖАЮЩУЮ СРЕДУ 241.04 KB
В настоящее время в отвалах полигона размещают следующие производственные отходы: пыль уловленная электрофильтрами вращающихся печей строительные отходы древесные опилки опочный камень. Размеры кусковой породы на входе в дробилку составляют 950 мм на выходе до 150 мм пыль выделяемая в процессе дробления улавливается 2-х ступенчатой системой очистки. Вся уловленная пыль мергеля от щековой молотковой дробилок и узлом перегрузки дробленого сырья в замкнутом цикле без промежуточной стадии хранения возвращается...
3885. 21.72 KB
Самое отрицательное воздействие производства на окружающую природную среду - это ее загрязнение, во многих районах мира достигающее критического значения для устойчивости экосистем и здоровья людей уровня.
17505. Влияние БАЭС на окружающую среду и биологическая реабилитация водохранилища 14.94 MB
Исследованы экологические отчеты специалистов БАЭС за несколько последних лет, а также информация подготовленная сотрудниками Воронежской ООО НПО «Альгобиотехнология» при проведении биологической реабилитации Белоярского водохранилища, документация, заявленная при проведении госзакупок на обслуживание плотины БАЭС.
625. Понятие вибрации. Воздействие вибрации на организм человека. Способы защиты от вредного воздействия вибрации 10.15 KB
Понятие вибрации. Воздействие вибрации на организм человека. Способы защиты от вредного воздействия вибрации. По способу передачи на человека вибрации подразделяются на общую передающуюся через опорные поверхности на тело человека и локальную передающуюся через руки человека.

В ходе исторического процесса взаимодействия природы и общества происходит непрерывное усиление влияния на окружающую среду антропогенных факторов.

По масштабам и степени воздействия на лесные экосистемы одно из важнейших мест среди антропогенных факторов занимают рубки главного пользования. (Рубка леса в пределах расчетной лесосеки и с соблюдением эколого-лесоводственных требований является одним из необходимых условий развития лесных биогеоценозов.)

Характер воздействия рубок главного пользования на лесные экосистемы в значительной степени зависит от применяемой техники и технологии лесозаготовок.

В последние годы в лес пришла новая тяжелая многооперационная лесозаготовительная техника. Внедрение ее требует неукоснительного соблюдения технологии лесозаготовительных работ, в противном случае возможны нежелательные экологические последствия: гибель подроста хозяйственно ценных пород, резкое ухудшение водно-физических свойств почв, увеличение поверхностного стока, развитие эрозионных процессов и др. Это подтверждается данными натурного обследования, проведенного специалистами Союзгипролесхоза в некоторых областях нашей страны. Вместе с тем немало фактов, когда разумное применение новой техники с соблюдением технологических схем лесосечных работ, учитывающих лесоводственные и природоохранные требования, обеспечивало необходимое сохранение подроста и создавало благоприятные условия для восстановления лесов ценными породами. В этой связи заслуживает внимания опыт работы с новой техникой лесозаготовителей Архангельской обл., которые добиваются с помощью разработанной технологии сохранения 60% жизнеспособного подроста.

Механизированные лесозаготовки существенно изменяют микрорельеф, строение почвы, ее физиологические и другие свойства. При использовании в летний период валочных (ВМ-4) или валочно-трелевочных машин (ВТМ-4) минерализуется до 80-90% площади лесосек; в условиях всхолмленного и горного рельефа такие воздействия на почву в 100 раз увеличивают поверхностный сток, усиливают эрозию почвы, а, следовательно, снижают ее плодородие.

Особенно большой вред лесным биогеоценозам и окружающей среде в целом сплошные рубки могут причинять в районах с легко уязвимым экологическим балансом (горные районы, притундровые леса, районы вечной мерзлоты и др.).

Отрицательное влияние на растительность и особенно на лесные экосистемы оказывают промышленные выбросы. Они влияют на растения непосредственно (через ассимиляционный аппарат) и косвенно (изменяют состав и лесорастительные свойства почвы). Вредные газы поражают надземные органы дерева и ухудшают жизнедеятельность микрофлоры корней, в результате чего резко снижается прирост. Преобладающим газообразным токсикантом является сернистый газ - своеобразный индикатор загрязнения воздушной среды. Значительный вред оказывают аммиак, окись углерода, фтор, фтористый водород, хлор, сероводород, окислы азота, пары серной кислоты и др.

Степень поражения растений загрязняющими веществами зависит от целого ряда факторов, и прежде всего от вида и концентрации токсикантов, продолжительности и времени их воздействия, а также от состояния и характера лесонасаждений (их состава, возраста, полноты и др.), метеорологических и других условий.

Более устойчивыми к действию токсических соединений являются средневозрастные, а менее устойчивыми - спелые и перестойные насаждения, лесные культуры. Лиственные породы более устойчивы к действию токсикантов, чем хвойные. Высокополнотные с обильным подлеском и ненарушенной структурой древостой устойчивее изреженных искусственных насаждений.

Действие высоких концентраций токсикантов на древостой в короткий период приводит к необратимым повреждениям и гибели их; длительное воздействие небольших концентраций вызывает патологические изменения в древостоях, а незначительные концентрации вызывают снижение их жизнедеятельности. Поражение лесов наблюдается практически в районе любого источника промышленных выбросов.

Более 200 тыс. га лесов повреждено в Австралии, где ежегодно с осадками выпадает до 580 тыс. т SO 2 . В ФРГ поражено вредными промышленными выбросами 560 тыс. га, в ГДР - 220, Польше - 379 и Чехословакии - 300 тыс. га. Действие газов распространяется на довольно значительные расстояния. Так, в США скрытые повреждения растений отмечались на расстоянии до 100 км от источника выбросов.

Вредное действие выбросов крупного металлургического комбината на рост и развитие древостоев распространяется на расстояние до 80 км. Наблюдения за лесом в районе химического завода с 1961 по 1975 г. показали, что прежде всего стали усыхать сосновые насаждения. За этот же период средний радиальный прирост упал на 46% на расстоянии 500 м от источника выбросов и на 20% в 1000 м от объекта выбросов. У березы и осины листва оказалась поврежденной на 30-40%. В 500-метровой зоне лес полностью усох через 5-6 лет после начала поражения, в 1000-метровой - через 7 лет.

На площади поражения с 1970 по 1975 г. усохших деревьев было 39%, сильноослабленных - 38 и ослабленных - 23%; на расстоянии 3 км от завода ощутимое поражение леса отсутствовало.

Наибольшее поражение лесов от промышленных выбросов в атмосферу наблюдается в районах крупных промышленных и топливно-энергетического комплексов. Имеют место и очаги поражения более мелкого масштаба, которые также наносят немалый вред, снижая природоохранные и рекреационные ресурсы района. Это относится прежде всего к малолесным районам. Для предотвращения или резкого снижения поражения лесов необходимо осуществление комплекса мероприятий.

Отвод лесных земель для нужд той или иной отрасли народного хозяйства или перераспределение их по назначению, а также прием земель в состав гослесфонда являются одной из форм воздействия на состояние лесных ресурсов. Сравнительно большие площади отводятся под сельскохозяйственные угодья, для промышленного и дорожного строительства, значительные площади используются горнопромышленной деятельностью, энергетической, строительной и другой промышленностью. На десятки тысяч километров через леса и другие угодья тянутся трубопроводы для перекачки нефти, газа и т. д.

Велико влияние лесных пожаров на изменение окружающей среды. Проявление и подавление жизнедеятельности ряда компонентов природы нередко связано с действием огня. Во многих странах мира формирование природных лесов в той или иной степени связано с влиянием пожаров, которые оказывают отрицательное влияние на многие процессы жизни леса. Лесные пожары наносят серьезные травмы деревьям, ослабляют их, обусловливают образование ветровала и бурелома, снижают водоохранно-защитные и другие полезные функции леса, способствуют размножению вредных насекомых. Воздействуя на все компоненты леса, они вносят серьезные изменения в лесные биогеоценозы и экосистемы в целом. Правда, в некоторых случаях под влиянием пожаров создаются благоприятные условия для возобновления леса - прорастания семян, появления и формирования самосева, особенно сосны и лиственницы, а иногда ели и некоторых других древесных пород.

На земном шаре лесные пожары ежегодно охватывают площадь до 10-15 млн. га и более, а в отдельные годы эта цифра увеличивается более чем вдвое. Все это ставит проблему борьбы с лесными пожарами в разряд первоочередных и требует большого внимания к ней лесохозяйственных и других органов. Острота проблемы возрастает в связи с быстрым народнохозяйственным освоением слабо обжитых лесных территорий, созданием территориально-производственных комплексов, ростом населения и его миграцией. Это относится прежде всего к лесам Западно-Сибирского, Ангаро-Енисейского, Саянского и Усть-Илимского производственных комплексов, а также к лесам некоторых других районов.

Серьезные задачи по охране природной среды возникают в связи с возрастанием масштабов использования минеральных удобрений и пестицидов.

Несмотря на их роль в повышении урожайности сельскохозяйственных и других культур, высокую экономическую эффективность, следует отметить, что при несоблюдении научно обоснованных рекомендаций их использования могут иметь место и негативные последствия. При небрежном хранении удобрений или плохой заделке их в почву возможны случаи отравления ими диких животных и птиц. Безусловно, химические соединения, используемые в лесном и особенно в сельском хозяйстве в борьбе с вредителями и болезнями, нежелательной растительностью, при уходе за молодыми насаждениями и др., нельзя отнести к совершенно безвредным для биогеоценозов. Отдельные из них оказывают отравляющее действие на животных, некоторые в результате сложных превращений образуют токсические вещества, способные накапливаться в организме животных и растений. Это обязывает строго следить за выполнением утвержденных правил использования пестицидов.

Применение химических препаратов при уходе за молодыми лесными насаждениями повышает пожароопасность, нередко снижает устойчивость насаждений к вредителям леса и болезням, может оказывать отрицательное влияние на опылителей растений. Все это должно учитываться при ведении хозяйства в лесу с применением химических препаратов; особое внимание должно быть обращено при этом на водоохранные, рекреационные и другие категории лесов защитного назначения.

В последнее время расширяются масштабы гидротехнических мероприятий, возрастает водопотребление, имеет место устройство отстойников на лесных площадях. Интенсивный водозабор влияет на гидрологический режим территории, и это, в свою очередь, приводит к нарушению лесных насаждений (зачастую они теряют свои водоохранные и водорегулирующие функции). Значительные отрицательные последствия для лесных экосистем может вызвать подтопление, особенно при строительстве гидроэлектростанции с системой водохранилищ.

К подтоплению огромных территорий и образованию мелководий приводит создание крупных водохранилищ, особенно в равнинных условиях. Образование мелководий и болот ухудшает санитарно-гигиеническую обстановку, отрицательно сказывается на природной среде.

Особый ущерб причиняет лесу пастьба скота. Систематическая и неурегулированная пастьба приводит к уплотнению почвы, уничтожению травянистой и кустарниковой растительности, повреждению подроста, изреживанию и ослаблению древостоя, снижению текущего прироста, поражению лесных насаждений вредителями и болезнями. При уничтожении подроста покидают лес насекомоядные птицы, поскольку их жизнь, гнездование чаще всего связаны с нижними ярусами лесонасаждений. Наибольшую опасность пастьба вызывает в горных районах, так как эти территории более всего подвержены эрозионным процессам. Все это требует особого внимания и осторожности при использовании лесных участков под пастбища, а также для сенокошения. Важную роль в осуществлении мероприятий по более эффективному и рациональному использованию лесных территорий для этих целей призваны сыграть новые правила сенокошения и пастьбы скота в лесах СССР, утвержденные постановлением Совета Министров СССР от 27 апреля 1983 г.

Серьезные изменения в биогеоценозе вызывает рекреационное использование лесов, особенно неурегулированное. В местах массового отдыха нередко наблюдается сильное уплотнение почвы, что приводит к резкому ухудшению ее водного, воздушного и теплового режимов, снижению биологической активности. В результате чрезмерного вытаптывания почвы могут погибнуть целые насаждения или отдельные группы деревьев (они ослабляются до такой степени, что становятся жертвами вредных насекомых и грибных болезней). Чаще всего от рекреационного пресса страдают леса зеленых зон, расположенных в 10-15 км от города, в окрестностях баз отдыха и местах массовых мероприятий. Определенный ущерб наносится лесам механическими повреждениями, разного рода отходами, мусором и др. Наименее устойчивы к антропогенному воздействию хвойные насаждения (ель, сосна), в меньшей степени страдают лиственные (береза, липа, дуб и др.).

Степень и ход дигрессии определяются устойчивостью экосистемы к рекреационной нагрузке. Устойчивость леса к рекреации определяет так называемую емкость природного комплекса (предельное количество отдыхающих, которое может без ущерба выдержать биогеоценоз). Важным мероприятием, направленным на сохранение лесных экосистем, повышение, их рекреационных свойств, является комплексное благоустройство территории с образцовым ведением здесь хозяйства.

Отрицательные факторы действуют, как правило, не изолированно, а в виде определенных взаимосвязанных компонентов. При этом действие антропогенных факторов часто усиливает отрицательное влияние природных. Например, влияние токсических выбросов промышленности и транспорта чаще всего сочетается с повышенной рекреационной нагрузкой на лесные биогеоценозы. В свою очередь, рекреация и туризм создают условия для возникновения лесных пожаров. Действие всех этих факторов резко снижает биологическую устойчивость лесных экосистем к вредителям и болезням.

При исследовании влияния на лесной биогеоценоз антропогенных и природных факторов необходимо учитывать, что отдельные компоненты биогеоценоза тесно связаны как между собой, так и с другими экосистемами. Количественное изменение одного из них неизбежно вызывает изменение во всех остальных, а существенное изменение всего лесного биогеоценоза неизбежно сказывается на каждом его компоненте. Так, в зонах постоянного действия токсических выбросов промышленности постепенно меняется видовой состав растительности и животного мира. Из древесных пород в первую очередь повреждаются и погибают хвойные. Из-за преждевременного отмирания хвои и уменьшения длины побегов меняется микроклимат в насаждении, что сказывается на изменении видового состава травянистой растительности. Начинают развиваться травы, способствующие размножению полевых мышей, систематически повреждающих лесные культуры.

Определенные количественные и качественные характеристики токсических выбросов приводят к нарушению или даже полному прекращению плодоношения у большинства древесных пород, что отрицательно сказывается на видовом составе птиц. Появляются устойчивые к действию токсических выбросов виды вредителей леса. В результате образуются деградированные и биологически неустойчивые лесные экосистемы.

Проблема снижения отрицательного воздействия антропогенных факторов на лесные экосистемы путем проведения целой системы охранных и защитных мероприятий неразрывно связана с мерами по охране и рациональному использованию всех других компонентов на основе разработки межотраслевой модели, учитывающей интересы рационального использования всех ресурсов среды в их взаимосвязи.

Приведенная краткая характеристика экологической взаимосвязи и взаимодействия всех компонентов природы показывает, что лес, как ни один другой из них, обладает мощными свойствами положительно влиять на окружающую природную среду, регулировать ее состояние. Будучи средообразующим фактором и активно влияя на все процессы эволюции биосферы, лес испытывает при этом и на себе влияние разбалансированной антропогенным воздействием взаимосвязи между всеми другими компонентами природы. Это и дает основание считать растительный мир и происходящие при его участии природные процессы ключевым фактором, определяющим генеральное направление поиска интегральных средств рационального природопользования.

Природоохранные схемы и программы должны стать важным средством выявления, предупреждения и решения проблем взаимоотношений человека и природы. Такие разработки помогут решить эти проблемы как в целом по стране, так и по ее отдельным территориальным единицам.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .


Качество окружающей среды - состояние окружающей среды, которое характеризуется физическими, химическими, биологическими и иными показателями и их совокупностью. Для решения вопросов управления и регулирования качества окружающей среды необходимо иметь следующее: представление о том, какое качество (состояние загрязнения) природных сред можно считать приемлемым; информацию о наблюдаемом состоянии окружающей среды и тенденциях его изменения; оценку соответствия (или несоответствия) наблюдаемого и прогнозируемого состояния окружающей среды приемлемому.
Как уже отмечалось ранее (см. гл.1.2), мониторинг окружающей среды (экологический мониторинг) - комплексная система наблюдений за состоянием окружающей среды, оценки и прогноза изменений состояния окружающей среды под воздействием природных и антропогенных факторов.
Существуют три уровня мониторинга окружающей среды для оценки антропогенного воздействия: локальный - на относительно небольшой территории в зонах высокой интенсивности воздействия (города, промышленные районы); региональный - на более обширные области в зонах со средним уровнем воздействия; глобальный - практически по всей территории земного шара.
Важнейшим элементом экологического мониторинга является оценка воздействия на окружающую среду (ОВОС), которая осуществляется в целях выявления и принятия необходимых и достаточных мер по предупреждению возможных неприемлемых для общества экологических и связанных с ним социальных, экономических и других последствий реализации хозяйственной или иной деятельности (рис. 1.3).

Рис. 1.3. Схема проведения мониторинга

Для снижения негативного воздействия загрязняющих веществ на биосферу в целом и её компоненты - атмосферу, литосферу, гидросферу - необходимо знать их предельные уровни.
В соответствии с законодательством Российской Федерации устанавливаются в области охраны окружающей среды нормативы качества окружающей среды и нормативы допустимого воздействия на неё, при соблюдении которых обеспечивается устойчивое функционирование естественных экологических систем и сохраняется биологическое разнообразие.
Предельно допустимая концентрация (ПДК) - максимальное количество вредного вещества в единице объема или массы, которое при длительном воздействии не вызывает каких-либо болезненных изменений в организме человека и неблагоприятных наследственных изменений у потомства, обнаруживаемых современными методами.
Определение ПДК основывается на пороговом принципе действия химических соединений. Порог вредного действия - минимальная доза вещества, при превышении которой в организме возникают изменения, выходящие за пределы физиологических и приспособительных реакций, или скрытая (временно компенсированная) патология.
Определённые таким образом нормативы основаны на принципе антропоцентризма, т.е. приемлемых для человека условий среды, что является основой санитарно-гигиенического нормирования. Однако человек не самый чувствительный из биологических видов, и нельзя считать, что если защищен человек, то защищены и экосистемы.
Экологическое нормирование предполагает учёт допустимой антропогенной нагрузки (ДАН) на экосистему, под воздействием которой отклонение от нормального состояния экосистемы не превышает естественных изменений, следовательно, не вызывает нежелательных последствий у живых организмов и не ведёт к ухудшению качества среды.
Но в качестве практического использования к настоящему времени известны лишь некоторые попытки учёта допустимой нагрузки для водоёмов рыбохозяйственного назначения.
Экологическая безопасность от деятельности хозяйственных субъектов должна обеспечиваться комплексом финансовых, законодательных и технических мер, уменьшающих вредное воздействие на окружающую среду.
Важнейшими законодательными актами являются Федеральные законы «О санитарно-эпидемиологическом благополучии населения» (1999), «Об охране окружающей среды» (2002), «Об экологической экспертизе» (2006). На территории России действуют федеральные санитарно-эпидемиологические правила и нормативы, утверждённые и введённые в действие федеральным органом исполнительной власти.
К числу основных методов управления охраной окружающей среды относятся информационные, предупредительные и принудительные (табл. 1.10).
Таблица 1.10
Методы регулирования рационального природопользования


Информаци
онные

Предупредительные

Принудительные

административные

финансо-
экономи
ческие

правовые

контроль
ные

взыска
ния

ответствен
ность

Мониторинг
Исследования
Образование
Просвещение
Воспитание
Пропаганда
Прогнозиро
вание

Норма
права
Стандарты
Разреше
ния
Экоэкс
пертиза

Проверка деятельности Сертификация товаров Лицензирование Экоаудит Инвентаризация

Субсидии
Дотации
Льготные
займы
Кредиты

Платежи
Налоги
Штрафы
Облига
ции

Запреты работ Ограничения деятельности Арест
Отстранение
Изъятие

Экологическая программа должна основываться на принципе устойчивого развития, который обеспечивается не отдельными природоохранными мероприятиями, а комплексной реконструкцией производства, позволяющей минимизировать расход природных ресурсов и одновременно уменьшать антропогенную нагрузку на окружающую среду.
Для достижения целей экологической программы в России определены следующие природоохранные мероприятия.
Охрана и рациональное использование водных ресурсов: строительство очистных сооружений для сточных вод предприятий; внедрение систем оборотного водоснабжения всех видов; повторное использование сбросных вод, улучшение их очистки; разработка методов очистки сточных вод и переработки жидких отходов; реконструкция или ликвидация накопителей отходов; создание и внедрение автоматизированной системы контроля за составом и объёмом сброса сточных вод.
Охрана атмосферного воздуха: установка газопылеулавливающих устройств; оснащение двигателей внутреннего сгорания нейтрализаторами для обеззараживания отработавших газов; создание автоматизированных систем контроля за загрязнением атмосферного воздуха; создание и оснащение лабораторий контроля за составом выбросов; внедрение установок для утилизации веществ из газов. Использование отходов производства и потребления: строительство мусороперерабатывающих заводов; внедрение технологий для переработки, сбора и транспортировки бытовых отходов с территории городов; строительство установок для получения сырья из отходов производства.
Контрольные вопросы и задания Что такое биосфера и чем определяются её границы? Какие компоненты (типы вещества) биосферы выделил В.И.Вернадский? Дайте определение понятий «биоценоз», «биотоп», «биогеоценоз», «экосистема». В чём отличие понятий «биогеоценоз» и «экосистема»? Что такое адаптации? Как их классифицируют? Что понимают под термином «вторая природа», «третья природа»? Назовите главные причины, негативные последствия и пути предотвращения загрязнения окружающей среды. Назовите виды мониторинга окружающей среды. Назовите естественные и антропогенные источники загрязнения атмосферного воздуха. Какие вещества являются источниками образования кислотных дождей? Назовите антропогенные факторы загрязнения водных объектов. Какие воды считаются загрязнёнными? Что такое эвтрофирование водоёмов и в чём заключается разница между эвтрофированием и загрязнением водоёмов? Охарактеризуйте наиболее часто встречающиеся загрязнители водной среды. Каковы последствия антропогенных кислотных загрязнений почв? Какие вещества относят к твёрдым бытовым отходам? На какие группы, с точки зрения экологической безопасности, их принято разделять? Приведите основные термины и определения, используемые в экотоксикологии. Перечислите основные пути поступления ксенобиотиков в организм человека и животных, дайте краткую характеристику каждого из них. Назовите основные типы радиоактивных распадов. Какая доза является мерой биологического воздействия радиации? Действительно ли окружающая среда подвергается значительно большей дозовой нагрузке после освоения ядерной энергии? Укажите источник излучения, вносящий максимальный вклад в дозу для населения. Какие радионуклиды являются биогенными? Укажите искусственные радионуклиды, активно участвующие в биогеохимических круговоротах. 0

КУРСОВАЯ РАБОТА

Антропогенное воздействие на атмосферу

Введение…………………………………………………………………………...3

1 Загрязнение атмосферного воздуха…………………………………………....4

1.1 Естественное загрязнение атмосферы…………………………………….…4

1.2 Антропогенное загрязнение атмосферы…………………………………….4

2 Основные источники антропогенного загрязнения атмосферы……….…….8

2.1 Загрязнение атмосферы промышленными отходами………………………8

2.1.1 Загрязнение атмосферного воздуха тепловыми и атомными электростанциями………………………………………………………………………… 9

2.1.2 Загрязнение атмосферного воздуха выбросами черной и цветной металлургии……………………………………………………………………………. .9

2.1.3 Загрязнение атмосферного воздуха выбросами химического производства………………………………………………………………………….…….10

2.2 Загрязнение атмосферы выбросами автотранспорта……………………...12

3 Последствия антропогенного загрязнения атмосферы……………………...14

3.1 Последствия локального (местного) загрязнения атмосферы……………14

3.2 Последствия глобального загрязнения атмосферы…………………….….17

4 Охрана атмосферного воздуха………………………………………………..24

4.1 Средства защиты атмосферы………………………………………………..24

4.1.1 Мероприятия по борьбе с выбросами автотранспорта………………….28

4.1.2 Способы очистки промышленных выбросов в атмосферу……………...30

4.2 Основные направления охраны атмосферы………………………………..31

Заключение…………………………………………………………………….…34

Список литературы………………………………………………………………35

Приложение А……………………………………………………………………36

Приложение Б……………………………………………………………………37

Введение

Вопрос о воздействии человека на атмосферу находится в центре внимания специалистов и экологов всего мира. И это не случайно, так как крупнейшие глобальные экологические проблемы современности - «парниковый эффект», нарушение озонового слоя, выпадение кислотных дождей, связаны именно с антропогенным загрязнением атмосферы.

Охрана атмосферного воздуха - ключевая проблема оздоровления окружающей природной среды. Атмосферный воздух занимает особое положение среди других компонентов биосферы. Значение его для всего живого на Земле невозможно переоценить. Человек может находиться без пищи пять недель, без воды - пять дней, а без воздуха всего лишь пять минут. При этом воздух должен иметь определенную чистоту и любое отклонение от нормы опасно для здоровья.

Атмосферный воздух выполняет и сложнейшую защитную экологическую функцию, предохраняя Землю от абсолютно холодного Космоса и потока солнечных излучений. В атмосфере идут глобальные метеорологические процессы, формируются климат и погода, задерживается масса метеоритов.

Атмосфера обладает способностью к самоочищению. Оно происходит при вымывании аэрозолей из атмосферы осадками, турбулентном перемешивании приземного слоя воздуха, отложении загрязненных веществ на поверхности земли и т. д. Однако в современных условиях возможности природных систем самоочищения атмосферы серьезно подорваны. Под массированным натиском антропогенных загрязнений в атмосфере стали проявляться весьма нежелательные экологические последствия, в том числе и глобального характера. По этой причине атмосферный воздух уже не в полной мере выполняет свои защитные, терморегулирующие и жизнеобеспечивающие экологические функции.

Цель курсовой работы - изучить проблемы антропогенного загрязнения атмосферы и выявить факторы, влияющие на состояние атмосферного воздуха.

Задачи курсовой работы:

  1. Изучить источники загрязнения атмосферы;
  2. Выявить экологические последствия антропогенного загрязнения атмосферы;

3.Охарактеризовать влияние атмосферного загрязнения на здоровье человека;

  1. Рассмотреть способы очистки загрязненного воздуха, поступающего в атмосферу;
  2. Ознакомиться с основными средствами защиты атмосферы.

1.Загрязнение атмосферного воздуха

1.1 Естественное загрязнение атмосферы

Под загрязнением атмосферного воздуха следует понимать любое изменение его состава и свойств, которое оказывает негативное воздействие на здоровье человека и животных, состояние растений и экосистем.

К природным источникам загрязнения относятся: извержения вулканов, пыльные бури, лесные пожары, пыль космического происхождения, частицы морской соли, продукты растительного, животного и микробиологического происхождения. Уровень такого загрязнения рассматривается в качестве фонового, который мало изменяется со временем.

Главный природный процесс загрязнения приземной атмосферы -вулканическая и флюидная активность Земли. Крупные извержения вулканов приводят к глобальному и долговременному загрязнению атмосферы, о чем свидетельствуют летописи и современные наблюдательные данные. Это обусловлено тем, что в высокие слои атмосферы мгновенно выбрасываются огромные количества газов, которые на большой высоте подхватываются движущимися с высокой скоростью воздушными потоками и быстро разносятся по всему земному шару.
Продолжительность загрязненного состояния атмосферы после крупных вулканических извержений достигает нескольких лет.

Значительно загрязняют атмосферу большие лесные пожары. Но чаще всего они появляются в засушливые годы. Дым от лесных распространяется на тысячи км. Это приводит к значительному уменьшению притока солнечной радиации к земной поверхности.

Пыльные бури появляются в связи с переносом мощным ветром поднятых с земной поверхности частиц земли. Мощные ветры - смерчи и ураганы - поднимают в воздух и большие обломки пород, но долго в воздухе они не держатся. При мощных пыльных бурях в атмосферный воздух поднимается до 50 млн. т. пыли.

Условно разделяют естественное загрязнение атмосферы на континентальное и морское, а также неорганическое и органическое. К источникам органического загрязнения относят аэропланктон - бактерии, в том числе болезнетворные, споры грибов, пыльцу растений (включая и ядовитую пыльцу амброзии) и т. д.

На долю естественных факторов в конце XX в. приходилось 75% общего загрязнения атмосферы. Остальные 25% возникали в результате деятельности человека.

1.2 Антропогенное загрязнение атмосферы

Влияние человека на атмосферу становится все глубже, все многограннее. Это стало не только научной, но и го-сударственной проблемой.

По агрегатному состоянию выбросы вредных веществ в атмосферу классифицируются на:

1) газообразные (диоксид серы, оксиды азота, оксид углерода, углеводороды и др.);

2) жидкие (кислоты, щелочи, растворы солей и др.);

3) твердые (канцерогенные вещества, свинец и его соединения, органическая и неорганическая пыль, сажа, смолистые вещества и прочие).

Вещества, загрязняющие атмосферу, подразделяют также на первичные и вторичные. Первичные это вещества, содержащиеся непосредственно в выбросах предприятий и поступающие с ними от разных источников. Вторичные являются продуктами трансформации первичного или вторичного синтеза. Они нередко более опасны по сравнению с первичными веществами.

В последние десятилетия антропогенные факторы загрязнения атмосферы стали превышать по масштабам естественные, приобретая глобальный характер. Они могут оказывать различные воздействия на атмосферу: непосредственное - на состояние атмосферы (нагревание, изменение влажности и др.); воздействие на физико-химические свойства атмосферы (изменение состава, увеличение концентрации СО 2 , аэрозолей, фреонов и пр.); воздействие на свойства подстилающей поверхности (изменение величины альбедо, системы "океан-атмосфера" и др.)

Загрязняющие вещества, выброшенные в воздушный бассейн в виде газов или аэрозолей предприятиями, могут:

1) оседать под действием силы тяжести (крупнодисперсные аэрозоли);

2) физически захватываться оседающими частицами (осадками) и поступать в литосферу и гидросферу;

3) включаться в биосферный круговорот соответствующих веществ (углекислый газ, пары воды, оксиды серы и азота и пр.);

4) изменять свое агрегатное состояние (конденсироваться,испаряться, кристаллизоваться и т. п.) или химически взаимодействовать с другими компонентами воздуха, после чего пойти одним из вышеуказанных путей;

5) находиться в атмосфере относительно длительное время, переносясь циркуляционными потоками в различные слои тропо- и стратосферы и в разные географические области планеты до тех пор, пока не создадутся условия для их физической или химической трансформации (например, фреоны).

Антропогенное загрязнение атмосферы делится на:

1)Радиоактивное

2)Электромагнитное

3)Шумовое

4)Аэрозольные

1) Наибольшую опасность представляет радиоактивное за-грязнение атмосферы в результате деятельности человека. В настоящее время радиоактивные элементы достаточно ши-роко используются в различных областях. Халатное отно-шение к хранению и транспортировке этих элементов приводит к серьезным радиоактивным загрязнениям. Радиоак-тивное заражение атмосферы и биосферы в целом связано, например, с испыта-ниями атомного оружия.

Во второй половине 20 столетия начали вводить в эксплуатацию атомные электростанции, ледоколы, подвод-ные лодки с ядерными установками. При нормальной экс-плуатации объектов атомной энергии и промышленности загрязнение окружающей среды радиоактивными нуклидами составляет ничтожно малую долю от естественного фона. Иная ситуация складывается при авариях на атом-ных объектах.

Так, при взрыве на Чернобыльской атомной станции в окружающую среду было выброшено лишь около 5% ядерно-го топлива. Но это привело к облучению многих людей, большие территории были загрязнены настолько, что стали опасными для здоровья. Это потребовало переселе-ния тысяч жителей из зараженных районов. Повышение радиации в результате выпадения радиоактивных осад-ков было отмечено за сотни и тысячи километров от места аварии.

В настоящее время все острее встает проблема складиро-вания и хранения радиоактивных отходов военной про-мышленности и атомных электростанций. С каждым годом они представляют все большую опасность для окружающей среды. Таким образом, использование ядерной энергии по-ставило перед человечеством новые серьезные проблемы.

2) Электромагнитные излучения техногенного происхождения являются, источниками физического загрязнения окружающей среды. Возрастание уровня электромагнитного загрязнения в последнее время говорит об электромагнитном смоге (по аналогии с химическим смогом). Электромагнитное загрязнение окружающей среды и химическое загрязнение имеют общие черты: и тот и другой вид предполагает более или менее постоянные уровни, и оба смога могут оказать неблагоприятное влияние на людей, животный и растительный мир.

3) Шумы относятся к числу вредных для человека загрязнений атмосферы. Раздражающее воздействие звука (шума) на человека зависит от его интенсивности, спектрального состава и продолжительности воздействия. Шумы со сплошными спектрами менее раздражительны, чем шумы узкого интервала частот. Наибольшее раздражение вызывает шум в диапазоне частот 3000-5000 Гц.

4) Аэрозоли - это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км. пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей.

Основными источниками искусственных аэрозольных загрязнений воздуха являются тепловые электростанции (ТЭС), которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест.

Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях.

Постоянными источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности. Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва (250-300 тонн взрывчатых веществ) в атмосферу выбрасывается около 2 тыс. куб. м. условного оксида углерода и более 150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью.

К атмосферным загрязнителям относятся углеводороды - насыщенные и ненасыщенные, включающие от 1 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц.

При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия - расположения слоя более холодного воздуха под теплым, что препятствует смешиванию воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

2 Основные источники антропогенного загрязнения

атмосферы

2.1 Загрязнение атмосферы промышленными отходами

Основное антропогенное загрязнение атмосферного воздуха создают автотранспорт и ряд отраслей промышленности. По особенностям строения и характеру влияния на атмосферу загрязнители, как правило, подразделяют на механические и химические.

Антропогенные источники загрязнения обусловлены хозяйственной деятельностью человека. К ним следует отнести:

1) Сжигание горючих ископаемых, которое сопровождается выбросом 5 млрд. т. углекислого газа в год. В результате этого за 100 лет (1860 - 1960 гг.) содержание СО 2 увеличилось на 18 % (с 0,027 до 0,032%). За последние три десятилетия темпы этих выбросов значительно возросли.

2) Работа тепловых электростанций, когда при сжигании высокосернистых углей в результате выделения сернистого газа и мазута образуются кислотные дожди.

3) Выхлопы современных турбореактивных самолетов с оксидами азота и газообразными фторуглеводородами из аэрозолей, которые могут привести к повреждению озонового слоя атмосферы (озоносферы).

4) Производственная деятельность.

5) Загрязнение взвешенными частицами (при измельчении, фасовке и загрузке, от котельных, электростанций, шахтных стволов, карьеров при сжигании мусора).

6) Выбросы предприятиями различных газов.

7) Сжигание топлива в факельных печах, в результате чего образуется самый массовый загрязнитель - монооксид углерода.

8) Сжигание топлива в котлах и двигателях транспортных средств, сопровождающееся образованием оксидов азота, которые вызывают смог.

9) Вентиляционные выбросы (шахтные стволы).

10) Вентиляционные выбросы с чрезмерной концентрацией озона из помещений с установками высоких энергий (ускорители, ультрафиолетовые источники и атомные реакторы) при предельно допустимой концентрации (ПДК) в рабочих помещениях 0,1 мг/м 3 . В больших количествах озон является высокотоксичным газом.

Каждой отрасли промышленности присущ характерный состав и масса веществ, поступающих в атмосферу. Это определяется прежде всего составом веществ, применяемых в технологических процессах, и экологическим совершенством последних. В настоящее время экологические показатели теплоэнергетики, металлургии, нефтехимического производства и ряда других производств изучены достаточно подробно. Меньше исследованы показатели машиностроения и приборостроения, их отличительными особенностями являются: широкая сеть производств, приближенность к жилым зонам, значительная гамма выбрасываемых веществ, среди которых могут содержаться вещества 1 и 2-го класса опасности, такие как пары ртути, соединения свинца и т. п. (Приложение А)

По данным ученых, ежегодно в мире в результате деятельности человека в атмосферу поступает большое количество вредных веществ. (Таблица 1)

Таблица 1.Выброс в атмосферу главных загрязнителей (поллютантов) в мире и в России.

2.1.1 Загрязнение атмосферного воздуха тепловыми и атомными электростанциями

В процессе сжигания твердого или жидкого топлива в атмосферу выделяется дым, содержащий продукты полного (диоксид углерода и пары воды) и неполного (оксиды углерода, серы, азота, углеводороды и др.) сгорания. Объем энергетических выбросов очень велик. Так, современная теплоэлектростанция мощностью 2,4 млн. кВт расходует до 20 тыс. т. угля в сутки и выбрасывает в атмосферу в сутки 680 т SO 2 и SO 3 , 120— 140 т твердых частиц (зола, пыль, сажа), 200 т оксидов азота.

Перевод установок на жидкое топливо (мазут) снижает выбросы золы, но практически не уменьшает выбросы оксидов серы и азота. Наиболее экологичное газовое топливо, которое в три раза меньше загрязняет атмосферный воздух, чем мазут, и в пять раз меньше, чем уголь.

Источники загрязнения воздуха токсичными веществами на атомных электростанциях (АЭС) — радиоактивный йод, радиоактивные инертные газы и аэрозоли. Крупный источник энергетического загрязнения атмосферы — отопительная система жилищ (котельные установки) дает мало оксидов азота, но много продуктов неполного сгорания. Из-за небольшой высоты дымовых труб токсичные вещества в высоких концентрациях рассеиваются вблизи котельных установок.

2.1.2 Загрязнение атмосферного воздуха выбросами черной и цветной металлургии

При выплавке одной тонны стали, в атмосферу выбрасывается 0,04 т твердых частиц, 0,03 т оксидов серы и до 0,05 т оксида углерода, а также в небольших количествах такие опасные загрязнители, как марганец, свинец, фосфор, мышьяк, пары ртути и др. В процессе сталеплавильного производства в атмосферу выбрасываются парогазовые смеси, состоящие из фенола, формальдегида, бензола, аммиака и других токсичных веществ.

Значительные выбросы отходящих газов и пыли, содержащих токсичные вещества, отмечаются на заводах цветной металлургии при переработке свинцово-цинковых, медных, сульфидных руд, при производстве алюминия и др.

Отрасли черной металлургии выбрасывают в воздух различные газы. Выброс пыли в расчете на 1 т передельного чугуна составляет 4,5 кг, сернистого газа—2,7 кг и марганца—0,5 — 0,1 кг. В выбросах в результате доменного процесса содержатся соединения мышьяка, фосфора, сурьмы, свинца, редких металлов, пары ртути, цианистый водород и смолистые вещества. Значительным источником загрязнения воздуха являются агломерационные фабрики. Во время агломерации происходит выгорание серы из пиритов. Сульфидные руды содержат до 10 % серы, а после агломерации ее остается менее 0,2 - 0,8 %. Выброс сернистого газа при агломерации составляет 190 кг на 1 т руды.

Мартеновский и конверторный сталеплавильные процессы выбрасывают при подаче кислорода в расплавленный металл 25 - 52 г/м пыли на 1 т стали, до 60 кг окиси углерода и до 3 кг сернистого газа. При коксовании 1 т угля образуется 300 - 320 м коксового газа, в состав которого входят: водород 50 - 62 % (объемных); метан 20 - 34; окись углерода 4,5 - 4,7; углекислый газ 1,8 - 4,0; азот 5 - 10 ; углеводороды 2,0 - 2,6 и кислород 0,2 - 0,5 %. Основная масса этих выбросов при производстве улавливается, но 6 % попадает в атмосферу. Иногда в силу технологического нарушения режима работы коксовых батарей в атмосферу выбрасываются значительные объемы неочищенного газа.

Предприятия цветной металлургии выбрасывают в атмосферу сернистый и углекислый газ, окись углерода и пыли окислов разных металлов. При получении металлического алюминия электролизом, с отходящими газами от электролизных ванн, в атмосферных воздух выделяется значительное количество газообразных и пылевидных фтористых соединений. В частности, при получении 1 т. алюминия в зависимости от типа и мощности электролизера расходуется от 33 до 47 кг фтора, при этом около 65 % его попадает в атмосферу. .

2.1.3 Загрязнение атмосферного воздуха выбросами химического производства

Выбросы этой отрасли, хотя и невелики по объему (около 2% всех промышленных выбросов), тем не менее, ввиду своей весьма высокой токсичности, значительного разнообразия и концентрированности представляют значительную угрозу для человека и всей биоты. На разнообразных химических производствах атмосферный воздух загрязняют оксиды серы, соединения фтора, аммиак, нитрозные газы (смесь оксидов азота, хлористые соединения, сероводород, неорганическая пыль и т. п.).

1) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 250 млн. т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

2) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

3) Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

4) Оксиды азота. Основными источниками выброса являются предприятия, производящие; азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих в атмосферу, составляет 20 млн. т. в год.

5) Соединения фтора. Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики. стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция.
Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

6) Соединения хлора. Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией.

2.2 Загрязнение атмосферы выбросами автотранспорта

С полным правом мы можем считать XX в. веком развития всех видов транспорта. С выхлопными газами в воздух поступает около 200 вредных примесей. При сгорании 1 л бензина расходуется 10 - 12 тыс. л воздуха, а при пробеге 15 тыс. км за год каждый автомобиль сжигает 2 т топлива и около 26 - 30 т воздуха, в том числе 4,5 т кислорода, что в 50 раз больше потребностей человека. При этом автомобиль выбрасывает в атмосферу (кг/год): угарного газа - 700, диоксида азота - 40, несгоревших углеводородов - 230 и твердых веществ - 2 - 5. Кроме того, выбрасывается много соединений свинца из-за применения в большинстве своем этилированного бензина.

Токсичными выбросами двигателей внутреннего сгорания (ДВС) являются отработавшие и картерные газы, пары топлива из карбюратора и топливного бака. Основная доля токсичных примесей поступает в атмосферу с отработавшими газами ДВС. С картерными газами и парами топлива в атмосферу поступает приблизительно 45 % углеводородов от их общего выброса.

Количество вредных веществ, поступающих в атмосферу в составе отработавших газов, зависит от общего технического состояния автомобилей и, особенно, от двигателя - источника наибольшего загрязнения. Так, при нарушении регулировки карбюратора выбросы оксида углерода увеличиваются в 4-5 раза. Применение этилированного бензина, имеющего в своем составе соединения свинца, вызывает загрязнение атмосферного воздуха весьма токсичными соединениями свинца. Около 70 % свинца, добавленного к бензину с этиловой жидкостью, попадает в виде соединений в атмосферу с отработавшими газами, из них 30 % оседает на земле сразу за срезом выпускной трубы автомобиля, 40 % остается в атмосфере. Один грузовой автомобиль средней грузоподъемности выделяет 2,5-3 кг свинца в год. Концентрация свинца в воздухе зависит от содержания свинца в бензине.

Выхлопные газы газотурбинных двигательных установок (ГТДУ) содержат такие токсичные компоненты, как оксид углерода, оксиды азота, углеводороды, сажу, альдегиды и др. Содержание токсичных составляющих в продуктах сгорания существенно зависит от режима работы двигателя. Высокие концентрации оксида углерода и углеводородов характерны для ГТДУ на пониженных режимах (при холостом ходе, рулении, приближении к аэропорту, заходе на посадку), тогда как содержание оксидов азота существенно возрастает при работе на режимах, близких к номинальному (взлете, наборе высоты, полетном режиме).

Суммарный выброс токсичных веществ в атмосферу самолетами с ГТДУ непрерывно растет, что обусловлено повышением расхода топлива до 20 - 30 т/ч и неуклонным ростом числа эксплуатируемых самолетов. Отмечается влияние ГТДУ на озоновый слой и накопление углекислого газа в атмосфере.

Наибольшее влияние на условия обитания выбросы ГТДУ оказывают в аэропортах и зонах, примыкающих к испытательным станциям. Сравнительные данные о выбросах вредных веществ в аэропортах подзывают, что поступления от ГТДУ в приземной слой атмосферы составляют, %: оксид углерода - 55, оксиды азота - 77, углеводороды - 93 и аэрозоль - 97. Остальные выбросы выделяют наземные транспортные средства с ДВС.

Загрязнение воздушной среды транспортом с ракетными двигательными установками происходит главным образом при их работе перед стартом, при взлете, при наземных испытаниях в процессе их производства или после ремонта, при хранении и транспортировании топлива. Состав продуктов сгорания при работе таких двигателей определяется составом компонентов топлива, температурой сгорания, процессами диссоциации и рекомбинации молекул. Количество продуктов сгорания зависит от мощности (тяги) двигательных установок. При сгорании твердого топлива из камеры сгорания выбрасываются пары воды, диоксид углерода, хлор, пары соляной кислоты, оксид углерода, оксид азота, а также твердые частицы Аl2O3 со средним размером 0,1 мкм (иногда до 10 мкм).

При старте ракетные двигатели неблагоприятно воздействуют не только на приземной слой атмосферы, но и на космическое пространство, разрушая озоновый слой Земли. Масштабы разрушения озонового слоя определяются числом запусков ракетных систем и интенсивностью полетов сверхзвуковых самолетов.

В связи с развитием авиации и ракетной техники, а также интенсивным использованием авиационных и ракетных двигателей в других отраслях народного хозяйства существенно возрос общий выброс вредных примесей в атмосферу. Однако на долю этих двигателей приходится пока не более 5 % токсичных веществ, поступающих в атмосферу от транспортных средств всех типов.

3 Последствия антропогенного загрязнения атмосферы

3.1 Последствия локального (местного) загрязнения атмосферы

Загрязнение воздуха, представляющее более явную и скорую угрозу здоровью людей, связано с попаданием в атмосферу токсинов, которые вырабатываются в некоторых производственных процессах. Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм человека преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку около 50% частиц примеси радиусом 0,01-0.1 мкм, проникающих в легкие, осаждаются в них.

Проникающие в организм частицы вызывают токсический эффект, поскольку они:

1) токсичны (ядовиты) по своей химической или физической природе;

2) служат помехой для одного или нескольких механизмов, с помощью которых нормально очищается респираторный (дыхательный) тракт;

3) служат носителем поглощенного организмом ядовитого вещества. В некоторых случаях воздействие одни из загрязняющих веществ в комбинации с другими приводят к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия.

Установлена зависимость между уровнем загрязнения воздуха и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхиты, астма, пневмония, эмфизема легких, а также болезни глаз. Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечнососудистых заболеваний.

Дело в том, что концентрация углекислого газа, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека, а концентрация более 750 мл. к смерти. Объясняется это тем, что это исключительно агрессивный газ, легко соединяющийся с гемоглобином (красными кровяными тельцами). При соединении образуется карбоксигемоглобин, повышение (сверх нормы, равной 0.4%) содержание которого в крови сопровождается:

1) ухудшением остроты зрения и способности оценивать длительность интервалов времени;

2) нарушением некоторых психомоторных функций головного мозга (при содержании 2-5%);

3) изменениями деятельности сердца и легких (при содержании более 5%);

4) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью (при содержании 10-80%).

Степень воздействия оксида углерода на организм зависят не только от его концентрации, но и от времени пребывания (экспозиции) человека в загазованном воздухе.

Диоксид серы и серный ангидрид Диоксид серы (SO 2) и серный ангидрид (SO 3) в комбинации со взвешенными частицами и влагой оказывают наиболее вредной воздействие на человека, живые организмы и материальные ценности. Эти окислители - основные составляющие фотохимического смога, повторяемость которого велика в сильно загрязненных городах, расположенных в низких широтах северного и южного полушария (Лос-Анджелес, в котором около 200 дней в году отмечается смог, Чикаго, Нью-Йорк и другие города США; ряд городов Японии, Турции, Франции, Испании, Италии, Африки и Южной Америки). (Приложение Б)

Назовем некоторые другие загрязняющие воздух вещества, вредно действующие на человека. Установлено, что у людей, профессионально имеющих дело с асбестом повышена вероятность раковых заболеваний бронхов и диафрагм, разделяющих грудную клетку и брюшную полость.

Бериллий оказывает вредное воздействие (вплоть до возникновения онкологических заболеваний) на дыхательные пути, а также на кожу и глаза.

Пары ртути вызывают нарушение работы центральной верхней системы и почек. Поскольку ртуть может накапливаться в организме человека, то в конечном итоге ее воздействие приводит к расстройству умственных способностей.

В городах вследствие постоянно увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих такими заболеваниями, как хронический бронхит, эмфизема легких, различные аллергические заболевания и рак легких. В Великобритании 10% случаев смертельных исходов приходится на хронический бронхит; населения в возрасте 40-59 лет страдает этим заболеванием.

Некоторые химические элементы радиоактивны: их самопроизвольный распад и превращение в элементы с другими порядковыми номерами сопровождается излучением. Наибольшую опасность представляют радиоактивные вещества с периодом полураспада от нескольких недель до нескольких лет: этого времени достаточно для проникновения таких веществ в организм растений и животных. Распространяясь по пищевой цепи (от растений к животным), радиоактивные вещества с продуктами питания поступают в организм человека и могут накапливаться в таком количестве, которое способно нанести вред здоровью человека.

Антропогенные выбросы загрязняющих веществ в больших концентрациях и в течение длительного времени наносят большой вред не только человеку, но отрицательно влияют на животных, состояние растений и экосистем в целом.

В экологической литературе описаны случаи массового отравления диких животных, птиц, насекомых при выбросах вредных загрязняющих веществ большой концентрации (особенно залповых). Так, например, установлено, что при оседании на медоносных растениях некоторых токсичных видов пыли наблюдается заметное повышение смертности пчел. Что касается крупных животных, то находящаяся в атмосфере ядовитая пыль поражает их в основном через органы дыхания, а также поступая в организм вместе со съеденными запыленными растениями.

В растения токсичные вещества поступают различными способами. Установлено, что выбросы вредных веществ действуют как непосредственно на зеленые части растений, попадая через устьица в ткани, разрушая хлорофилл и структуру клеток, так и через почву на корневую систему. Так, например, загрязнение почвы пылью токсичных металлов, особенно в соединении с серной кислотой, губительно действует на корневую систему, а через нее и на все растение.

Загрязняющие газообразные вещества по-разному влияют на состояние растительности. Одни лишь слабо повреждают листья, хвоинки, побеги (окись углерода, этилен и др.). Другие действуют на растения губительно (диоксид серы, хлор, пары ртути, аммиак, цианистый водород и др.). Особенно опасен для растений диоксид серы (SO), под воздействием которого гибнут многие деревья, и в первую очередь хвойные — сосны, ели, пихты, кедр.

В результате воздействия высокотоксичных загрязнителей на растения отмечается замедление их роста, образование некроза на концах листьев и хвоинок, выход из строя органов ассимиляции и т. д. Увеличение поверхности поврежденных листьев может привести к снижению расхода влаги из почвы, общей ее переувлажненности, что неизбежно скажется на среде ее обитания.(Таблица 2)

Вредные вещества

Характеристика

Диоксид серы

Основной загрязнитель, яд для ассимиляционных органов растений, действует на расстоянии до 30 км

Фтористый водород и четырехфтористый кремний

Токсичны даже в небольших количествах, склонны к образованию аэрозолей, действуют на расстоянии до 5 км

Хлор, хлороводород

Повреждают в основном на близком расстоянии

Соединения свинца, углеводороды, оксид углерода, азот

Заражают растительность в районах высокой концентрации промышленности и транспорта

Сероводород

Клеточный и ферментный яд

Повреждает растения на близком расстоянии

Таблица 2. Токсичность загрязнителей воздуха для растений

Способна ли растительность восстановиться после снижения воздействия вредных загрязняющих веществ? Во многом это будет зависеть от восстанавливающей способности оставшейся зеленой массы и общего состояния природных экосистем. В то же время следует заметить, что невысокие концентрации отдельных загрязнителей не только не вредят растениям, но и, как, например, кадмиевая соль, стимулируют прорастание семян, прирост древесины, рост некоторых органов растений.

В улучшении воздушной среды городов и поселков большое значение имеют архитектурные и планировочные мероприятия. Структура планировки должна способствовать улучшению микроклимата и защите воздушного бассейна. Необходимо учитывать основные источники загрязнения окружающей среды - промышленные объекты и установки, автомобильные дороги, аэропорты и аэродромы, железные дороги, телецентры, ретрансляторы, радиостанции, электростанции, дискомфортные природно-климатические условия, организацию очистки и утилизацию отходов и т. д. В зависимости от вредности выбрасываемых в атмосферу веществ и степени их очистки в ходе технологического процесса промышленные предприятия делятся на пять классов. Для предприятий первого класса устанавливается санитарно-защитная зона шириной 1000 м, второго - 500, третьего - 300, четвертого - 100 и пятого - 50 м. В зоне допускается расположение пожарных депо, бань, прачечных, гаражей, складов, административно-служебных зданий, торговых помещений и т. д., но не жилых домов. Территория этих зон обязательно должна быть озеленена. Роль зеленых насаждений и лесопарковых массивов в городах многогранна. Зеленые насаждения являются биофильтром, отфильтровывают вредные примеси, радиоактивные частицы, поглощают шум.

В целом защита атмосферного воздуха от загрязнений должна проводиться не только в региональном или местном масштабе, а в первую очередь в глобальном, поскольку воздух не знает никаких границ и находится в вечном движении.

3.2 Последствия глобального загрязнения атмосферы

К важнейшим экологическим последствиям глобального загрязнения атмосферы относятся:

1) возможное потепление климата (“парниковый эффект”);

2) нарушение озонового слоя;

3) выпадение кислотных дождей.

4) образование смога

Большинство ученых в мире рассматривают их как крупнейшие экологические проблемы современности.

1) Систематические наблюдения за содержанием диоксида углерода в атмосфере показывают его рост. Известно, что углекислый газ в атмосфере, подобно стеклу в оранжерее, пропускает лучистую энергию Солнца к поверхности Земли, оно задерживает инфракрасное (тепловое) излучение Земли и тем самым создает так называемый тепличный (парниковый) эффект.

Глобальные изменения климата тесно связаны с загрязнением атмосферы промышленными отходами и выхлопными газами. Влияние человеческой цивилизации на климат Земли - реальность, последствия которой ощущаются уже сейчас. Ученые считают, что сильная жара в 1988 г. и засуха в США - в какой-то мере следствия так называемого эффекта - глобального потепления атмосферы земли в результате повышения содержания в ней углекислого газа из-за вырубки лесов, поглощающих его, и сжигание такого топлива, как уголь и бензин, при котором происходит выброс этого газа в атмосферу. Углекислый газ и другие загрязнители действуют подобно пленке или стеклу в парниках: они пропускают солнечное тепло к Земле и удерживают его здесь. В целом температура на земле в первые 5 мес 1988 г. была выше, чем в любой аналогичный период за те 130 лет, как ведутся измерения. Можно утверждать, что причиной изменения температуры стало давно ожидавшееся глобальное потепление, связанное с загрязнением окружающей среды. Тенденция к потеплению является не естественным явлением, а следствием парникового эффекта.

Как известно, главным по значению «парниковым» газом является водяной пар. За ним следуют углекислый газ, обеспечивающий в 80-х гг. 49 % дополнительного по сравнению с началом прошлого века увеличения парникового эффекта, метан (18 %), фреоны (14 %), закись азота NO (6 %). На остальные газы приходится 13 %.

Изменение климата ученые связывают с изменениями содержания в атмосфере «парниковых» газов. Известно, как менялся химический состав атмосферы 160 тыс. лет. Эти сведения получены на основе анализа состава пузырьков воздуха в ледниковых кернах, извлеченных с глубины до 2 км на станции «Восток» в Антарктиде и в Гренландии. Найдено, что в теплые периоды концентрации углекислого газа и метана были примерно в 1,5 раза выше, чем в холодные ледниковые. Эти результаты подтверждают высказанное в 1861 г. Дж. Тиндалем предположение о том, что историю изменения климата Земли можно объяснить изменениями концентрации углекислого газа в атмосфере.

В спокойном состоянии человек пропускает через легкие 10 - 11 тыс. дм 3 воздуха в сутки, тогда как при физических нагрузках и повышении температуры воздуха потребность в кислороде может возрасти в 3 - 6 раз. Соответственно население планеты выделяет в год более 6 млрд. т углекислого газа (СО 2). С учетом домашних животных эта цифра по меньшей мере удвоится. Тем самым чисто биологический вклад в увеличение содержания углекислого газа в атмосфере оказывается соизмеримым с промышленным выбросом углекислого газа.

Наряду с ростом потребления ископаемого топлива увеличение содержания СО 2 в атмосфере может быть связано с уменьшением массы наземной растительности. Особенно сказывается вырубка высокопродуктивных лесов в странах Южной Америки и Африке. Скорость уничтожения лесов - легких планеты - растет, и к концу столетия при нынешних темпах площадь лесов уменьшится на 20 - 25 %.

Предсказывают, что увеличение содержания СО 2 в атмосфере на 60 % от современного уровня может вызвать повышение температуры земной поверхности на 1,2 - 2,0 С. Существование же обратной связи между величиной снежного покрова, альбедо и температурой поверхности должно привести к тому, что изменения температуры могут быть еще большими и вызвать коренное изменение климата на планете с непредсказуемыми последствиями.

Если сегодняшний уровень потребления ископаемых топлив сохранится до 2050 г., то концентрация СО 2 в атмосфере возрастет вдвое. В отсутствии других факторов это приведет к повышению температуры поверхности Земли на 3 о С.

К сожалению, растет содержание в атмосфере не только СО 2 но и других «парниковых» газов, в частности оксида азота, оксид серы, кислорода, а также метана, фреонов и других органических веществ. Если темпы роста концентрации «парниковых» газов сохранятся на прежнем уровне, то к 2020 г. загрязнение атмосферы будет соответствовать эквивалентному удвоению содержания СО 2 .

Удвоение концентрации метана приведет к повышению температуры земной поверхности на 0,2 - 0,3 о С.

Увеличение концентрации фреонов в тропосфере в 20 раз приведет к возрастанию температуры поверхности на 0,4 - 0,5 о С. Увеличение температуры на 1 о С произойдет при одновременном удвоении содержания метана, аммиака, и оксида азота.

В то же время климатологи считают значительным изменением средней температуры даже на 0,1 о С, а увеличение температуры на 3,5 о С - критическим.

Глобальное потепление приведет к заметному перемещению в более высокие широты основных географических зон Северного полушария. Зона тундры, в частности, будет постепенно исчезать при продвижении в более высокие широты лесов. Несомненно, что потепление окажет существенное влияние на континентальные и морские льды.

Площадь ледников на территории РФ будет сокращаться и многие из них сравнительно быстро исчезнут. Заметно сократится площадь зоны вечной мерзлоты. Ледяной покров Северного Ледовитого океана в следующем столетии или будет полностью разрушен, или его заменит сравнительно тонкий лед, который будет возникать зимой и таять летом.

Хотя перечисленные здесь черты ожидаемого изменения природных условий на территории нашей страны сравнительно благоприятны для народного хозяйства, из-за быстрого изменения климата они могут привести к существенным трудностям, в особенности если изменения не будут учтены при долгосрочном планировании хозяйственной деятельности.

Парниковый эффект нарушит климат планеты, изменив такие критически важные переменные величины, как осадки, ветер, слой облаков, океанические течения и размеры полярных ледниковых шапок. Хотя последствия для отдельных стран далеко не ясны, ученые уверены в общих тенденциях. Внутренние районы континентов станут суше, а побережья влажнее. Холодные сезоны станут короче, а теплые длиннее. Усиление испарения приведет к тому, что почва станет суше на обширных площадях.

Одна из наиболее широко обсуждаемых и вызывающих страх последствий парникового эффекта - это прогнозируемое повышение уровня моря в результате повышения температуры. Большинство ученых считают, что этот подъем будет относительно постепенным, создавая проблемы в основном в странах с большой численностью населения, живущего на уровне или ниже уровня моря, в таких, как Нидерланды и Бангладеш. Что касается географических районов, то парниковый эффект может оказать наибольшее влияние в высоких широтах северного полушария. Снег и лед отражают солнечный свет в космическое пространство, не позволяя температуре повышаться. Но в связи с потеплением на всем земном шаре плавающий арктический лед начнет таять, в результате чего для отражения останется меньше снега и льда.

2) Общее количество озона в атмосфере не велико, тем не менее, озон — один из наиболее важных ее компонентов. Благодаря ему смертоносная ультрафиолетовая солнечная радиация в слое между 15 и 40 км над земной поверхностью ослабляется примерно в 6500 раз.

Озон образуется в основном в стратосфере под действием коротковолновой части ультрафиолетового излучения Солнца. В зависимости от времени года и удаленности от экватора содержание озона в верхних слоях атмосферы меняется, однако значительные отклонения от средних величин концентрации озона впервые были отмечены лишь в начале 80-х годов прошлого века. Тогда над южным полюсом планеты резко увеличилась озоновая дыра - область с пониженным содержанием озона.

Осенью 1985 г. его содержание снизилось относительно среднего на 40%. Уменьшение содержания озона наблюдалось и на других широтах. Уменьшение «толщины» озонового слоя приводит к изменению (увеличению) количества ультрафиолетового излучения Солнца, достигающего поверхности Земли, нарушению теплового баланса планеты. Изменение интенсивности солнечного излучения заметно влияет на биологические процессы, что, в конце концов, может привести к критическим ситуациям. С увеличением доли ультрафиолетовой составляющей в излучении, доходящем до поверхности планеты, связывают рост числа раковых заболеваний кожи у людей и животных.

У человека это три вида быстротекущих раковых заболеваний: меланома и две карциномы. Установлено, что увеличение дозы ультрафиолетового излучения на 1% приводит к увеличению раковых заболеваний на 2%. Однако у жителей высокогорных районов, где интенсивность излучения в несколько раз выше, чем на уровне моря, рак крови встречается реже, чем у жителей низменностей. Это противоречие пока объясняют тем, что не столько увеличился уровень облучения, сколько изменился образ жизни людей по современным данным, озоновая дыра существовала практически всегда, то появляясь, время от времени, то исчезая в соответствии с сезонными изменениями в состоянии атмосферы.

В начале 80-х годов прошлого века было установлено, что произошли серьезные изменения в динамике этого явления - «дыра» перестала восстанавливаться до исходного состояния. Таким образом, природные колебания концентрации озона в стратосфере усложнились из-за антропогенного воздействия людей, которые стали значительно больше времени проводить на солнце. В то же время жесткое ультрафиолетовое излучение относится к числу ионизирующих излучений, а, следовательно, является мутагенным фактором среды обитания. По расчетам одна молекула хлора способна разрушить до 1 млн. молекул озона в стратосфере, а одна молекула оксида азота — до 10 молекул озона.

Феномен антарктической «озоновой дыры» по одной из теорий объясняется воздействием хлорфторуглеродов (фреонов) антропогенного происхождения. Так, измерения показали почти двукратное превышение фоновых концентраций хлорсодержащих частиц в зоне антарктической «дыры» и наличие в весенние месяцы в стратосфере над Антарктидой областей почти без озона.

3) Кислотные осадки — это серная и азотная кислоты, образующиеся при растворении в воде диоксидов серы и азота, и выпадающие на поверхность земли вместе с дождем, туманом, снегом или пылью.

Кислотные дожди - следствие нарушения круговорота веществ между атмосферой, гидросферой и литосферой.

Кислотность измеряется водородным показателем (рН), который выражается десятичным логарифмом концентрации водородных ионов. Облачная и дождевая вода в нормальных условиях должна иметь рН = 5,6 - 5,7. Это зависит от растворения в ней атмосферного углекислого газа с образованием слабой угольной кислоты. Но вот уже десятки лет над Северной Америкой и Европой выпадают дожди с содержанием в них кислот в десятки, сотни, тысячи раз большими. По содержанию кислоты современные дожди соответствуют сухому вину, а часто и столовому уксусу. Кислота в дождях вызвана растворением оксидов серы и азота и образованием соответствующих кислот.

Сернистый газ образуется и выбрасывается в атмосферу при сжигании угля, нефти, мазута, а так же при добычи цветных металлов из сернистых руд. А оксиды азота образуются при соединении азота с кислородом воздуха при высоких температурах, главным образом в двигателях внутреннего сгорания и котельных установках. Получение энергии - основы цивилизации и прогресса, увы, сопровождается закислением окружающей среды. Дело осложняется еще и тем, что трубы тепловых электростанций стали расти в высоту. Их высота достигла 250 - 300 и даже 400 м.

Количество выбросов в атмосферу не уменьшилось, но они теперь рассеиваются на огромных территориях, преодолевают большие расстояния, переносятся через государственные границы. В странах Скандинавии только 20 - 25 % всех кислотных дождей собственного происхождения, а остальное они получают от дальних и ближних соседей. Вследствие более частых западных ветров через западные границы Россия получает в 8 - 10 раз больше соединений серы и азота, чем от нас переносится в обратном направлении. Закисление дождей, а затем почв и природных вод вначале протекало как скрытый, незаметный процесс. Чистые, но уже подкисленные озера сохраняли свою обманчивую красоту.

Лес выглядел таким же, как и раньше, но уже начались необратимые изменения. При кислотных дождях чаще всего страдают пихта, ель, сосна, потому что смена хвои происходит реже, чем смена листьев и она накапливает больше вредных веществ за один и тот же период времени.

Кислота разрушает сооружения из мрамора и известняка. Эта судьба грозит Тадж-Махалу - шедевру индийской архитектуры периода Великих Монголов, в Лондоне - Тауэру и Вестминстерскому аббатству. Античная конная статуя римского императора Марка Аврелия, которая более четырех веков украшала знаменитую площадь на Капитолийском холме, построенная по проекту Микеланджело, «переехала» в реставрационные мастерские в 1981 г. Дело в том, что эта статуя работы неизвестного мастера, возраст которой составляет 1800 лет, «тяжело больна». Высокий уровень загрязнения атмосферы, выхлопные газы автомобилей, а также палящие лучи солнца и дожди нанесли огромный ущерб бронзовой статуи императора.

Для снижения материального ущерба металлы, чувствительные к автомобильным выбросам, заменяют на алюминий; на сооружения наносят специальные газоустойчивые растворы и краски. Многие ученые видят в развитии автотранспорта и во все большем загрязнении воздуха крупных городов автомобильными газами главную причину увеличения заболевания легких.

4)Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения.

В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами.

Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличие в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей; интенсивная солнечная радиация и безветрие или очень слабый обмен воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии.

Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количестве озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

4 Охрана атмосферного воздуха

4.1 Средства защиты атмосферы

На XIX специальной сессии Генеральной Ассамблеи ООН в июне 1997 года было принято одно из основных направлений природоохранной деятельности национальных правительств в рамках программы. Это направление заключается в поддержании чистоты атмосферного воздуха планеты. Для защиты атмосферы необходимы административные и технические меры, направленные на уменьшение возрастающего загрязнения атмосферы. Защита атмосферы не может быть успешной при односторонних и половинчатых мерах, направленных против конкретных источников загрязнения. Необходимо определить причины загрязнения, проанализировать вклад отдельных источников в общее загрязнение и выявить возможности ограничить эти выбросы.

Так в целях защиты окружающей среды в декабре 1997 года был принят Киотский протокол, направленный на регулирование выбросов в атмосферу парниковых газов. В РФ на сохранение и улучшение качества атмосферного воздуха направлен закон «Об охране атмосферного воздуха». Этот закон должен регулировать отношения в области охраны атмосферного воздуха, чтобы улучшить состояние атмосферного воздуха и обеспечить благоприятную среду для обитания человека, предотвратить химическое и т. п. воздействие на атмосферный воздух и обеспечить рациональное использование воздуха в промышленности.

Контроль загрязнения атмосферы на территории России осуществляется почти в 350 городах. Система наблюдения включает 1200 станций и охватывает почти все города с населением более 100 тыс. жителей и города с крупными промышленными предприятиями.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК.

Соблюдение этого требования достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

Вывод токсичных веществ из помещений общеобменной вентиляцией;

Локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху;

Локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязненного воздуха в специальных аппаратах, выброс и рассеивание в атмосфере;

Очистка технологических газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом;

Очистка отработавших газов энергоустановок, например, двигателей внутреннего сгорания в специальных агрегатах, и выброс в атмосферу или производственную зону (рудники, карьеры, складские помещения и т. п.)

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители (сухие, электрические, мокрые, фильтры); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Их работа характеризуется рядом параметров. Основными из них являются активность очистки, гидравлическое сопротивление и потребляемая мощность.

Широкое применение для очистки газов от частиц получили сухие пылеуловители - циклоны различных типов.

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Для этого применяют электрофильтры.

Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки.

Такие решения находят применение при высокоэффективной очистке газов от твердых примесей; при одновременной очистке от твердых и газообразных примесей; при очистке от твердых примесей и капельной жидкости и т. п.

Многоступенчатую очистку широко применяют в системах очистки воздуха с его последующим возвратом в помещение.

Защита атмосферы не может быть успешной при односторонних и половинчатых мерах, направленных против конкретных источников загрязнения. Наилучшие результаты могут быть получены лишь при объективном, многостороннем подходе к определению причин загрязнения атмосферы, вкладу отдельных источников и выявлению реальных возможностей ограничения этих выбросов.

В городских и промышленных конгломератах, где имеются значительные концентрации малых и больших источников загрязняющих веществ, лишь комплексный подход, базирующийся на конкретных ограничениях для конкретных источников или их групп, может привести к установлению приемлемого уровня загрязнения атмосферы при сочетании оптимальных экономических и технологических условий. Исходя из этих положений, необходим независимый источник информации, который располагал бы сведениями не только о степени загрязнения атмосферы, но и видах технологических и административных мер. Объективная оценка состояния атмосферы совместно со сведениями обо всех возможностях уменьшения выбросов позволяет создать реальные планы и долговременные прогнозы загрязнения атмосферы применительно к наихудшим и наиболее благоприятным обстоятельствам и формирует твердую основу для выработки и укрепления программы защиты атмосферы.

По продолжительности программы защиты атмосферы подразделяются на долговременные, средней продолжительности и кратковременные. Методы подготовки планов по защите атмосферы базируются на обычных методах планирования и координируются так, чтобы удовлетворять долговременные требования в этой области.

Неотъемлемой частью кратковременного и средней продолжительности планирования являются незамедлительные меры по предотвращению дальнейшего загрязнения наиболее неблагополучных в этом отношении районов путем установки оборудования, конструированного специально для снижения выбросов от существующих источников загрязнений. Если предложения по долгосрочным мерам для защиты атмосферы представлены в виде просто рекомендаций, то они, как правило, не реализуются, поскольку требования, предъявляемые промышленности часто не совпадают с ее интересами и планами развития.

Важнейший фактор в формировании прогнозов по защите атмосферы - количественная оценка будущих выбросов. На основании анализа источников выбросов в отдельных промышленных районах, особенно в результате процессов сгорания, заведена общенациональная оценка основных источников твердых и газообразных выбросов за последние 10—14 лет. Затем сделан прогноз о возможном уровне выбросов на предстоящие 10—15 лет. При этом были учтены два направления развития национальной экономики:

1) пессимистическая оценка—допущение о сохранении существующего уровня технологии и ограничений по выбросам, а также о сохранении существующих методов контроля загрязнений на действующих источниках и о применении современных высокоэффективных сепараторов только на новых источниках выбросов;

2) оптимистическая оценка—допущение о максимальном развитии и использовании новой технологии с ограниченным количеством отходов и применении методов, снижающих твердые и газообразные выбросы как от существующих, так и от новых источников. Таким образом, оптимистическая оценка становится целью при уменьшении выбросов.

Составление прогноза включает: определение основных мер, необходимых в данной технико-экономической ситуации; установление альтернативных путей промышленного развития (особенно для топливных и других энергетических источников); оценку комплексных капиталовложений, требуемых для реализации всего стратегического плана; сопоставление этих затрат с ущербом от загрязнения атмосферы. Соотношение капиталовложений на защиту атмосферы (включая оборудование для ограничения выбросов от существующих и вновь вводимых источников) и суммарного ущерба от загрязнения атмосферы составляет примерно 3: 10.

Вполне справедливо будет включить стоимость оборудования для ограничения выбросов в себестоимость продукции, а не в затрату на защиту атмосферы, тогда указанное соотношение капиталовложений и ущерба от загрязнений составит 1: 10.

Отдельные области исследований по защите атмосферы часто группируются в список в соответствии с рангом процессов, приводящие к ее загрязнению.

  1. Источники выбросов (местоположение источников, применяемое сырье и методы его переработки, а также технологические процессы).
  2. Сбор и накопление загрязняющих веществ (твердых, жидких и газообразных).
  3. Определение и контроль за выбросами (методы, приборы, технологии).
  4. Атмосферные процессы (расстояние от дымовых труб, перенос на дальние расстояния, химические превращения загрязняющих веществ в атмосфере, расчет ожидаемого загрязнения и составление прогнозов, оптимизация высоты дымовых труб).
  5. Фиксация выбросов (методы, приборы, стационарные и мобильные замеры, точки замеров, сетки замеров).
  6. Воздействие загрязненной атмосферы на людей, животных, растения, строения, материалы и т. д.
  7. Комплексная защита атмосферы в сочетании с защитой окружающей среды.

При этом необходимо учитывать различные точки зрения, основными из которых являются:
- законодательная (административные меры);
- организационная и контролирующая;
- прогностическая с созданием проектов, программ и планов;
- экономическая с получением дополнительных экономических эффектов;
- научная, проведение исследований и разработок;
- испытания и измерения;
- реализация, включая производство продукция и создание установок;
- практическое применение и эксплуатация;
- стандартизация и унификация.

4.1.1 Мероприятия по борьбе с выбросами автотранспорта

Оценка автомобилей по токсичности выхлопов. Большое значение имеет повседневный контроль над автомашинами. Все автохозяйства обязаны следить за исправностью выпускаемых на линию машин. При хорошо работающем двигателе в выхлопных газах окиси углерода должно содержаться не более допустимой нормы.

Положением о Государственной автомобильной инспекции на нее возложен контроль за выполнением мероприятий по охране окружающей среды от вредного влияния автомототранспорта.

В принятом стандарте на токсичность предусмотрено дальнейшее ужесточение нормы, хотя они и сегодня в России жестче европейских: по окиси углерода - на 35%, по углеводородам - на 12%, по окислам азота-на 21%.

На заводах введены контроль и регулирование автомобилей по токсичности отработавших газов.

Системы управления городским транспортом. Разработаны новые системы регулирования уличного движения, которые сводят к минимуму возможность образования пробок, потому что, останавливаясь и потом, набирая скорость, автомобиль выбрасывает в несколько раз больше вредных веществ, чем при равномерном движении.

Построены автомагистрали в обход городов, которые приняли весь поток транзитного транспорта, который раньше нескончаемой лентой тянулся по городским улицам. Резко снизилась интенсивность движения, уменьшился шум, чище стал воздух.

В Москве создана автоматизированная система управления дорожным движением «Старт». Благодаря совершенным техническим средствам, математическим методам и вычислительной технике она позволяет оптимально управлять движением транспорта во всем городе и полностью освобождает человека от обязанностей непосредственного регулирования автомобильных потоков. «Старт» на 20 - 25% сократит задержки транспорта у перекрестков, на 8-10% уменьшит количество дорожно-транспортных происшествий, улучшит санитарное состояние городского воздуха, увеличит скорость сообщения общественного транспорта, снизит уровень шумов.

Перевод автотранспорта на дизельные двигатели. По мнению специалистов, перевод автотранспорта на дизельные двигатели уменьшит выброс в атмосферу вредных веществ. В выхлопе дизеля почти не содержится ядовитой окиси углерода, так как дизельное топливо сжигается в нем практически полностью.

К тому же дизельное топливо свободно от тетраэтила свинца, присадки, которая используется для повышения октанового числа бензина, сжигаемого в современных карбюраторных двигателях с высокой степенью сжигания.

Дизель экономичнее карбюраторного двигателя на 20-30%. Более того, для производства 1 л дизельного топлива требуется в 2,5 раза меньше энергии, чем для производства того же количества бензина. Получается, таким образом, как бы двойная экономия энергоресурсов. Именно этим объясняется быстрый рост числа автомобилей, работающих на дизельном топливе.

Совершенствование двигателей внутреннего сгорания. Создание автомобилей с учетом требований экологии - одна из серьезных задач, которые стоят сегодня перед конструкторами.

Совершенствование процесса сгорания топлива в двигателе внутреннего сгорания, применение электронной системы зажигания приводит к уменьшению в выхлопе вредных веществ.

Нейтрализаторы. Большое внимание придается разработке устройства снижения токсичности-нейтрализаторов, которыми можно оснастить современные автомобили.

Способ каталитического преобразования продуктов сгорания заключается в том, что отработавшие газы очищаются, вступая в контакт с катализатором.

Одновременно происходит дожигание продуктов неполного сгорания, содержащихся в выхлопе автомобилей.

Нейтрализатор крепят к выхлопной трубе, и газы, прошедшие через него, выбрасываются в атмосферу очищенными. Одновременно устройство может выполнять функции глушителя шума. Эффект от использования нейтрализаторов достигается внушительный: при оптимальном режиме выброс в атмосферу оксида углерода уменьшается на 70-80%, а углеводородов - на 50-70%.

Значительно улучшить состав выхлопных газов можно с помощью различных добавок к топливу. Ученые разработали присадку, которая снижает содержание сажи в выхлопных газах на 60-90% и канцерогенных веществ - на 40%.

В последнее время на нефтеперерабатывающих предприятиях страны широко внедряется процесс каталитического риформинга низкооктановых бензинов. В результате можно выпускать неэтилированные, малотоксичные бензины.

Использование их снижает загрязненность атмосферного воздуха, увеличивает срок службы автомобильных двигателей, сокращает расход топлива.

Газ вместо бензина. Высокооктановое, стабильное по составу газовое топливо хорошо смешивается с воздухом и равномерно распределяется по цилиндрам двигателя, способствуя более полному сгоранию рабочей смеси.

Суммарный выброс токсичных веществ у автомобилей, работающих на сжиженном газе, значительно меньше, чем у машин с бензиновыми двигателями. Так, грузовик «ЗИЛ-130», переведенный на газ, имеет показатель по токсичности почти в 4 раза меньше, чем его бензиновый собрат.

При работе двигателя на газе происходит более полное сгорание смеси. А это ведет к снижению токсичности отработавших газов, уменьшению нагарообразования и расхода масла, увеличению моторесурса. Кроме того, сжиженный газ дешевле бензина.

Электромобиль. В настоящее время, когда автомобиль с бензиновым двигателем стал одним из существенных факторов, приводящих к загрязнению окружающей среды, специалисты все чаще обращаются к идее создания «чистого» автомобиля. Речь, как правило, идет об электромобиле.

В настоящее время в нашей стране производятся электромобили пяти марок.

Электромобиль Ульяновского автозавода («УАЗ»-451-МИ) отличается от остальных моделей системой электродвижения на переменном токе и встроенным зарядным устройством. В интересах защиты окружающей среды считается целесообразным перевод автотранспорта на электротягу, особенно в крупных городах.

4.1.2 Способы очистки промышленных выбросов в атмосферу

К основным способам относятся:

1)Абсорбционный метод;

2)Способ окисления горючих;

3)Каталитическое окисление;

4)Сорбционно-каталитический;

5)Адсорбционно-окислительный;

Абсорбционный способ очистки газов, осуществляемый в установках-абсорберах, наиболее прост и дает высокую степень очистки, однако требует громоздкого оборудования и очистки поглощающей жидкости. Основан на химических реакциях между газом, например, сернистым ангидридом, и поглощающей суспензией (щелочной раствор: известняк, аммиак, известь). При этом способе на поверхность твердого пористого тела (адсорбента) осаждаются газообразные вредные примеси. Последние могут быть извлечены с помощью десорбции при нагревании водяным паром.

Способ окисления горючих углеродистых вредных веществ в воздухе заключается в сжигании в пламени и образовании СО 2 и воды, способ термического окисления - в подогреве и подаче в огневую горелку.

Каталитическое окисление с использованием твердых катализаторов заключается в том, что сернистый ангидрид проходит через катализатор в виде марганцевых составов или серной кислоты.

Для очистки газов методом катализа с использованием реакций восстановления и разложения применяют восстановители (водород, аммиак, углеводороды, монооксид углерода). Нейтрализация оксидов азота NO достигается применением метана с последующим использованием оксида алюминия для нейтрализации на втором этапе образующегося монооксида углерода.

Перспективен сорбционно-каталитический способ очистки особо токсичных веществ при температурах ниже температуры катализа.

Адсорбционно-окислительный способ также представляется перспективным. Он заключается в физической адсорбции малых количеств вредных компонентов с последующим выдуванием адсорбированного вещества специальным потоком газа в реактор термокаталитического или термического дожигания.

В крупных городах для снижения вредного влияния загрязнения воздуха на человека применяют специальные градостроительные мероприятия: зональную застройку жилых массивов, когда близко к дороге располагают низкие здания, затем - высокие и под их защитой - детские и лечебные учреждения; транспортные развязки без пересечений, озеленение.

4.2 Основные направления охраны атмосферы

На XIX специальной сессии Генеральной Ассамблеи ООН в июне 1997 года было принято одно из основных направлений природоохранной деятельности национальных правительств в рамках программы. Это направление заключается в поддержании чистоты атмосферного воздуха планеты. Для защиты атмосферы необходимы административные и технические меры, направленные на уменьшение возрастающего загрязнения атмосферы.

Защита атмосферы не может быть успешной при односторонних и половинчатых мерах, направленных против конкретных источников загрязнения. Необходимо определить причины загрязнения, проанализировать вклад отдельных источников в общее загрязнение и выявить возможности ограничить эти выбросы.

Так в целях защиты окружающей среды в декабре 1997 года был принят Киотский протокол, направленный на регулирование выбросов в атмосферу парниковых газов. В РФ на сохранение и улучшение качества атмосферного воздуха направлен закон «Об охране атмосферного воздуха» он всесторонне охватывает проблему. Этот закон должен регулировать отношения в области охраны атмосферного воздуха, чтобы улучшить состояние атмосферного воздуха и обеспечить благоприятную среду для обитания человека, предотвратить химическое и т. п. воздействие на атмосферный воздух и обеспечить рациональное использование воздуха в промышленности.

Закон «Об охране атмосферного воздуха» обобщил требования, выработанные в предшествующие годы и оправдавшие себя на практике. Например, введение правил о запрещении ввода в действие любых производственных объектов (вновь созданных или реконструированных), если они в процессе эксплуатации станут источниками загрязнений или иных отрицательных воздействий на атмосферный воздух. Получили дальнейшее развитие правила о нормировании предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе.

Государственным санитарным законодательством только для атмосферного воздуха были установлены ПДК для большинства химических веществ при изолированном действии и для их комбинаций.

Гигиенические нормативы - это государственное требование к руководителям предприятий. За их выполнением должны следить органы государственного санитарного надзора Министерства здравоохранения и Государственный комитет по экологии.

Большое значение для санитарной охраны атмосферного воздуха имеет выявление новых источников загрязнения воздушной среды, учет проектируемых, строящихся и реконструируемых объектов, загрязняющих атмосферу, контроль за разработкой и реализацией генеральных планов городов, поселков и промышленных узлов в части размещения промышленных предприятий и санитарно-защитных зон.

В Законе «Об охране атмосферного воздуха» предусматриваются требования об установлении нормативов предельно допустимых выбросов загрязняющих веществ в атмосферу. Такие нормативы устанавливаются для каждого стационарного источника загрязнения, для каждой модели транспортных и других передвижных средств и установок. Они определяются с таким расчетом, чтобы совокупные вредные выбросы от всех источников загрязнения в данной местности не превышали нормативов ПДК загрязняющих веществ в воздухе.

Предельно допустимые выбросы устанавливаются только с учетом предельно допустимых концентраций.

Очень важны требования Закона, относящиеся к применению средств защиты растений, минеральных удобрений и других препаратов. Все законодательные меры составляют систему профилактического характера, направленную на предупреждение загрязнения воздушного бассейна.

Закон предусматривает не только контроль за выполнением его требований, но и ответственность за их нарушение. Специальная статья определяет роль общественных организаций и граждан в осуществлении мероприятий по охране воздушной среды, обязывает их активно содействовать государственным органам в этих вопросах, так как только широкое участие общественности позволит реализовать положения этого закона. Так, в нем сказано, что государство придает большое значение сохранению благоприятного состояния атмосферного воздуха, его восстановлению и улучшению для обеспечения наилучших условий жизни людей - их труда, быта, отдыха и охраны здоровья.

Предприятия или их отдельные здания и сооружения, технологические процессы которых являются источником выделения в атмосферный воздух вредных и неприятно пахнущих веществ, отделяют от жилой застройки санитарно-защитными зонами. Санитарно-защитная зона для предприятий и объектов может быть увеличена при необходимости и надлежащем обосновании не более чем в 3 раза в зависимости от следующих причин:

а) эффективности предусмотренных или возможных для осуществления методов очистки выбросов в атмосферу;

б) отсутствия способов очистки выбросов;

в) размещения жилой застройки при необходимости с подветренной стороны по отношению к предприятию в зоне возможного загрязнения атмосферы;

г) розы ветров и других неблагоприятных местных условий (например, частые штили и туманы);

д) строительства новых, еще недостаточно изученных вредных в санитарном отношении производств.

Размеры санитарно-защитных зон для отдельных групп или комплексов крупных предприятий химической, нефтеперерабатывающей, металлургической, машиностроительной и других отраслей промышленности, а также тепловых электрических станций с выбросами, создающими большие концентрации различных вредных веществ в атмосферном воздухе и оказывающими особо неблагоприятное влияние на здоровье и санитарно-гигиенические условия жизни населения, устанавливают в каждом конкретном случае по совместному решению Минздрава и Госстроя России.

Для повышения эффективности санитарно-защитных зон на их территории высаживают древесно-кустарниковую и травянистую растительность, снижающую концентрацию промышленной пыли и газов. В санитарно-защитных зонах предприятий, интенсивно загрязняющих атмосферный воздух вредными для растительности газами, следует выращивать наиболее газоустойчивые деревья, кустарники и травы с учетом степени агрессивности и концентрации промышленных выбросов. Особо вредны для растительности выбросы предприятий химической промышленности (сернистый и серный ангидрид, сероводород, серная, азотная, фтористая и бромистая кислоты, хлор, фтор, аммиак и др.), черной и цветной металлургии, угольной и теплоэнергетической промышленности.

Заключение

Охрана воздуха - задача нашего века, проблема, ставшая социальной.

Оценка и прогноз химического состояния приземной атмосферы, связанного с природными процессами ее загрязнения, существенно отличается от оценки и прогноза качества этой природной среды, обусловленного антропогенными процессами.

Вулканической и флюидной активностью Земли, другими природными феноменами нельзя управлять. Речь может идти только о минимизации последствий негативного воздействия, которое возможно лишь в случае глубокого понимания особенностей функционирования природных систем разного иерархического уровня, и, прежде всего, Земли как планеты. Необходим учет взаимодействия многочисленных факторов, изменчивых во времени и пространстве. К главным факторам относятся не только внутренняя активность Земли, но и ее связи с Солнцем, космосом. Поэтому мышление «простыми образами» при оценке и прогнозе состояния приземной атмосферы недопустимо и опасно.

Антропогенные процессы загрязнения воздушного бассейна в большинстве случаев поддаются управлению.

Масштабы антропогенного воздействия на окружающую среду и уровень вытекающей из этого опасности заставляют искать новые подходы к развитию технологических процессов, которые, являясь не менее эффективными в экономическом смысле, во много раз превосходили бы существующие по степени экологической чистоты.

Легко сформулировать основные методы достижения чистого воздуха. Сложнее эти методы реализовать при наличии экономического кризиса, ограниченных финансовых ресурсов. В такой постановке вопроса необходимы исследования и практические мероприятия, которые помогут справиться с проблемами антропогенного загрязнения атмосферы.

Фактически противоречие между экономикой и экологией означает противоречие между необходимостью гармоничного развития системы природа-человек-производство и недостаточной объективной возможностью, а порой и просто субъективным нежеланием такой гармонии на современном этапе развития производственных сил и производственных отношений.

Список использованных источников

  • http://www.ecology-portal.ru/publ/12-1-0-296
  • http://www.globalm.ru/question/52218/
  • Степановских А.С. С 79 Экология: Учебник для вузов. — М.: ЮНИТИ-ДАНА, - 703 с.
  • Химия и жизнь №11, 1999, с. 22 - 26
  • Николайкин Н. И. Экология: Учеб. для вузов / Н. И. Николайкин, Н. Е. Николайкина, О. П. Мелехова. — 3-е изд., стереотип. — М.: Дрофа, 2004. — 624 с: ил.
  • http://burenina.narod.ru/6-7.htm

7) Марчук Г. И., Кондратьев К. Я. Приоритеты глобальной экологии. М.: Наука, 1992. 26) с.

8) http://mishtal.narod.ru/Atm.html

9) Протасов В.Ф. «Экология, здоровье и охрана окружающей среды в России»,10) Круговорот вещества в природе и его изменение хозяйственной деятельностью человека. М.: Изд-во Моск. ун-та, 1990. 252 с.

11) Наше общее будущее. М.: Прогресс. 1989. 376 с.

12) Миланова Е. В., Рябчиков А. М. Использование природных ресурсов и охрана природы. М.: Высш. шк., 1986. 280 с.

13) Данилов-Данильян В.И. «Экология, охрана природы и экологическая безопасность» М.: МНЭПУ, 1997 г.

14) Лебедева М. И., Анкудимова И. А. Экология: Учеб. пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2002. 80 с.

15) http://www.car-town.ru/interesnoe-o-sgoranii/obrazovanie-smoga.html

16) Белов С.В. «Безопасность жизнедеятельности» М.: Высшая школа, 1999 г.

17) Родионов А. И. и др. Техника защиты окружающей среды. Учебник для вузов. М. Химия. 1989.

18) Балашенко С. А., Демичёв Д. М.. Экологическое право. М., 1999.

Загрязнение атмосферы выбросами промышленных предприятий

Рисунок А.1

Влияние выхлопных газов автомобилей на здоровье человека

Вредные вещества

Последствия воздействия на организм человека

Оксид углерода

Препятствует абсорбированию кровью кислорода, что ослабляет мыслительные способности, замедляет рефлексы, вызывает сонливость и может быть причиной потери сознания и смерти

Влияет на кровеносную, нервную и мочеполовую системы; вызывает, вероятно, снижение умственных способностей у детей, откладывается в костях и других тканях, поэтому опасен в течение дли

Оксиды азота

Могут увеличивать восприимчивость организма к вирусным заболеваниям (типа гриппа), раздражают легкие, вызывают бронхит и пневмонию

Раздражает слизистую оболочку органов дыхания, вызывает кашель, нарушает работу легких; снижает сопротивляемость к простудным заболеваниям; может обострять хронические заболевания сердца, а также вызывать астму, бронхит

Токсичные выбросы (тяжелые металлы)

Вызывают рак, нарушение функций половой системы и дефекты у новорожденных

Таблица Б.1

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.