Илья пригожин порядок из хаоса. И. Пригожин, И. Стенгерс. Порядок из хаоса. Новый диалог человека с природой. Введение. вызов науке


Discontinuity , 1894-1912.- Oxford : Clarendon Press , N. Y .: Oxford University Press , 1978) ОБЫЕМ ЙЪСЭОЩЕ БТЗХНЕОФЩ, УЧЙДЕФЕМШУФЧХА-ЭЙЕ П ФПН, ЮФП рМБОЛ РТЙДЕТЦЙЧБМУС УФБФЙУФЙЮЕУЛПК ФТБЛФПЧЛЙ ОЕПВ-ТБФЙНПУФЙ, РТЕДМПЦЕООПК вПМЯГНБОПН.

7 Mehra J., Rechenberg H. The Historical Development of Quantum Theory. Vol. 1-4. - N. Y.: Springer, 1982.

8 пФОПУЙФЕМШОП ЛПОГЕРФХБМШОЩИ ПУОПЧ ОЕДБЧОП РТЕДМПЦЕООЩИ ЬЛУРЕТЙНЕОФБМШОЩИ РТПЧЕТПЛ ЗЙРПФЕЪЩ П УЛТЩФЩИ РЕТЕНЕООЩИ Ч ЛЧБО-ФПЧПК НЕИБОЙЛЕ УН.: d " Espagnat ч. Conceptual Foundations of Quantum Mechanics . 2nd aug. ed.-Reading, Mass.: Benjamin, 1976. уН . ФБЛЦЕ d"Espagnat B. The Quantum Theory and Reality, Scien-tific American, 1979, vol. 241, p. 128-140.

9 пФОПУЙФЕМШОП РТЙОГЙРБ ДПРПМОЙФЕМШОПУФЙ УН ., ОБРТЙНЕТ : d"Es ТБ gnat ч . Conceptual Foundations of Quantum Mechanics. 2nd aug. ed.-Reading, Mass.: Benjamin, 1976; Jammer M. The Philo-sophy of Quantum Mechanics.-N. Y.-John Wiley and Sons, 1974; Petersen A. Quantum Mechanics and Philosophica Tradition.- Cambridge, Mass.: MIT Press, 1968; George у ., Prigogine I. Coherence and Randomness in Quantum Theory. Physica, 1979, vol. 99A, p. 369-382.

10 Rosenfeld L. The Measuring Process in Quantum Mecha-nics. Supplement of the Progress of Theoretical Physics, 1965, p. 222.

11 пФОПУЙФЕМШОП ЛЧБОФПЧПНЕИБОЙЮЕУЛЙИ РБТБДПЛУПЧ, ЛПФПТЩЕ У РПМОЩН ПУОПЧБОЙЕН НПЦОП ОБЪЧБФШ ЛПЫНБТБНЙ ЛМБУУЙЮЕУЛПЗП ТБЪХ-НБ, РПУЛПМШЛХ ЧУЕ ПОЙ: Й ЛПЫЛБ ыТЕДЙОЗЕТБ, Й "РТЙСФЕМШ" чЙЗОЕТБ, Й НОПЦЕУФЧЕООЩЕ НЙТЩ ьЧЕТЕФФБ - РТЙЪЧБОЩ ПЦЙЧЙФШ ЙДЕА-жЕОЙЛУ ЪБНЛОХФПК ПВЯЕЛФЙЧОПК ФЕПТЙЙ ОБ ЬФПФ ТБЪ Ч ЧЙДЕ ХТБЧОЕОЙС ыТЕДЙОЗЕТБ. уН. ЛОЙЗЙ Д"ьУРБОШЙ Й дЦЕННЕТБ, ХЛБЪБООЩЕ Ч РТЙНЕЮБ-ОЙЙ 9 Л ЬФПК ЗМБЧЕ.

12 Misr Б ч ., Prigogine I., Courbage M. Lyapunov Va-riable; Entropy and Measurement in Quantum Mechanics. 1979, vol. 76, p. 4768-4772; Prigogine I., George C. The. Second Law as a Selection Prin-ciple: The Microscopic Theory of Dissipative Processes in Quantum Systems. Proceedings of the National Academy of Sciences, 1983, vol. 80, p. 4590--4594.

l3 Minkowski H. Space and Time. The Principles of Relativi-ty.-N. Y.: Dower Publications, 1923. [тХУУЛЙК РЕТЕЧПД: MЙОЛПЧУЛЙК з. рТПУФТБОУФЧП Й ЧТЕНС.-ч УВ.: рТЙОГЙР ПФОПУЙФЕМШОПУФЙ. з. б. мПТЕОГ, б. рХБОЛБТЕ, б. ьКОЫФЕКО, з. нЙОЛПЧУЛЙК.- M .-м.: пофй, 1936, У. 181.]

14 уБИБТПЧ б. д. рЙУШНБ Ч цХТОБМ ЬЛУРЕТЙНЕОФБМШОПК Й ФЕПТЕФЙЮЕУЛПК ЖЙЪЙЛЙ, 1967, Ф. 5, ЧЩР. I, У, 32-35.

зМБЧБ 8

1 љ Lewis G. N. The Symmetry of Time in Physics. Science, 1930, vol. 71, p. 570.

2 Eddingt П n A. S. The Nature of the Physical World. - N. Y.: Macmillan, 1948, p. 74.

3 Gardner M. The Ambidextrous Universe: Mirror Asymmetry and Time-Reversed Worlds.-N. Y.: Charles Scribner"s Sons, 1979, p. 243. [тХУУЛЙК РЕТЕЧПД: зБТДОЕТ M. ьФПФ РТБЧЩК, МЕЧЩК НЙТ. - M.: нЙТ, 1967. уЕТЙС "ч НЙТЕ ОБХЛЙ Й ФЕИОЙЛЙ".]

4 Planck M. Treatise on Thermodynamics.-N. Y.: Dover Pub-


lications , 1945, p . 106. [тХУУЛЙК РЕТЕЧПД: рМБОЛ M. мЕЛГЙЙ РП ФЕТ-НПДЙОБНЙЛЕ нБЛУБ рМБОЛБ.-урВ., 1900, У. 91-92,]

5 чЩУЛБЪЩЧБОЙЕ вЕТОБ РТЙЧЕДЕОП Ч ТБВПФЕ: Denbigh л. How Subjective Is Entropy ? Chemistry in Britain. 1981, vol. 17, p. 168- 185.

6 уН ., ОБРТЙНЕТ : лБУ M. Probability and Related Topics in Phy-sical Sciences. - L.: Interscience Publishers, 1959. [тХУУЛЙК РЕТЕЧПД: л Б Г M. чЕТПСФОПУФШ Й УНЕЦОЩЕ ЧПРТПУЩ Ч ЖЙЪЙЛЕ. - M.: нЙТ, 1965.]

7 Gibbs J. W. Elementary Principles in Statistical Mechanics. - N. T: Dover Publications,љ 1960, Ch. XII.љљ [тХУУЛЙК РЕТЕЧПД: зЙВВУ д Ц. ч. пУОПЧОЩЕ РТЙОГЙРЩ УФБФЙУФЙЮЕУЛПК НЕИБОЙЛЙ, ТБЪ-ТБВПФБООЩЕ УП УРЕГЙБМШОЩН РТЙНЕОЕОЙЕН Л ТБГЙПОБМШОПНХ ПВПУОПЧБ-ОЙА ФЕТНПДЙОБНЙЛЙ. зМ. XII. п ДЧЙЦЕОЙЙ УЙУФЕН Й БОУБНВМЕК УЙУФЕН Ч ФЕЮЕОЙЕ ВПМШЫЙИ РТПНЕЦХФЛПЧ ЧТЕНЕОЙ.-ч ЛО.: зЙВВУ дЦ. ч. фЕТНПДЙОБНЙЛБ.љ уФБФЙУФЙЮЕУЛБС НЕИБОЙЛБ.-M.:љ оБХЛБ,љ 1982, У. 463. уЕТЙС "лМБУУЙЛЙ ЕУФЕУФЧПЪОБОЙС".]

8 оБРТЙНЕТ, у. чБФБОБВЕ РТПЧПДЙФ ТЕЪЛПЕ ТБЪМЙЮЙЕ НЕЦДХ НЙ-ТПН УПЪЕТГБЕНЩН Й НЙТПН, Ч ЛПФПТПН НЩ ДЕКУФЧХЕН ЛБЛ БЛФЙЧОЩЕ БЗЕОФЩ. рП ХФЧЕТЦДЕОЙА чБФБОБВЕ, ОЕРТПФЙЧПТЕЮЙЧПЕ ПВЯСУОЕОЙЕ ЧПЪТБУФБОЙС ЬОФТПРЙЙ ОЕЧПЪНПЦОП ЧОЕ УЧСЪЙ У ЧПЪДЕКУФЧЙСНЙ, РТПЙЪ-ЧПДЙНЩНЙ ОБНЙ ОБ НЙТ. оП Ч ДЕКУФЧЙФЕМШОПУФЙ ЧУС ОБЫБ ЖЙЪЙЛБ НП-ЦЕФ ТБУУНБФТЙЧБФШУС ЛБЛ ОБХЛБ П НЙТЕ, ОБ ЛПФПТЩК НЩ ЧПЪДЕКУФЧХ-ЕН, РПЬФПНХ РТПЧПДЙНБС чБФБОБВЕ ДЕНБТЛБГЙПООБС МЙОЙС НЕЦДХ НЙ-ТПН УПЪЕТГБЕНЩН Й НЙТПН ЛБЛ БТЕОПК БЛФЙЧОЩИ ДЕКУФЧЙК ОЕУРПУПВ-ОБ РТПСУОЙФШ ЧЪБЙНПУЧСЪШ НЕЦДХ НЙЛТПУЛПРЙЮЕУЛПК ДЕФЕТНЙОЙУФЙЮЕ-УЛПК УЙННЕФТЙЕК Й НБЛТПУЛПРЙЮЕУЛПК ЧЕТПСФОПУФОПК БУЙННЕФТЙЕК. чПРТПУ РП-РТЕЦОЕНХ ПУФБЕФУС ВЕЪ ПФЧЕФБ. лБЛЙН ПВТБЪПН НЩ НПЦЕН, ОБРТЙНЕТ, РТЙДБФШ УНЩУМ ХФЧЕТЦДЕОЙА П ФПН, ЮФП УПМОГЕ љ ОЕПВТБФЙНП УЗПТБЕФ? уН .: Watanabe S. Time and Probabilistic View of the World.-In.: The Voices of Time. /Ed. J. Fraser.-N. Y.: Braziller, 1966.

9 дЕНПО нБЛУЧЕММБ ЧРЕТЧЩЕ РПСЧЙМУС Ч ТБВПФЕ : Maxwell J. у . Theory of Heat.-L.: Longmans, 1971, Ch. XXII. уН . ФБЛЦЕ ; Daub E. Maxwell"s Demon; Heimann P. Molecular Forces. Statistical Representation and Maxwell"s Demon. - In.: Studies in History and Philosophy of Science, 1970, vol. 1. ьФПФ ФПН ГЕМЙЛПН РПУЧСЭЕО нБЛУЧЕММХ.

10 чП ltzmann L. Populare Schriften.-Braunschweig-Wiesbaden: Vieweg, 1979. [тХУУЛЙК РЕТЕЧПД: вПМШГНБО м. уФБФШЙ Й ТЕЮЙ.-M.: оБХЛБ, 1970, У. 6.] лБЛ РПДЮЕТЛЙЧБМ ьМШЛБОБ (Elkana Y . чП ltzmann " s Scientific Research Program and Its Alternatives .- In .: Interaction Between Science and Philosophy .- Atlantic , Highlands , N. J .: Humanities Press , 1974), ДБТЧЙОПЧУЛБС ЙДЕС ЬЧП-МАГЙЙ ПУПВЕООП ПФЮЕФМЙЧП ЧЩ ТБЦЕОБ ЧП ЧЪЗМСДБИ вПМШГНБОБ ОБ ОБ-ХЮОПЕ ЪОБОЙЕ, Ф. П. Ч ПФУФБЙЧБОЙЙ вПМШГНБОПН НЕИБОЙУФЙЮЕУЛЙИ НП-ДЕМЕК, РПДЧЕТЗОХФЩИ ЬОЕТЗЕФЙУФБНЙ ТЕЪЛПК ЛТЙФЙЛЕ. уН., ОБРТЙНЕТ, МЕЛГЙА "чФПТПК ЪБЛПО НЕИБОЙЮЕУЛПК ФЕПТЙЙ ФЕРМБ", У ЛПФПТПК вПМШГ-НБО ЧЩУФХРЙМ Ч 1886 З. (Boltzmann L . The Second Law of Ther - modynamics .- In .: Theoretical Physics and Philosophical Problems . / Ed . B . McGuinness .- Dordrecht : D . Reidel , 1974. [тХУУЛЙК РЕТЕЧПД: вПМШГНБО м. чФПТПК ЪБЛПО НЕИБОЙЮЕУЛПК ФЕПТЙЙ ФЕРМБ.-ч ЛО.: вПМШГНБО м. уФБФШЙ Й ТЕЮЙ.-M.: оБХЛБ, 1970, У. 3-28.])

11 вПМЕЕ РПДТПВОП ВПМШГНБОПЧУЛБС ЙОФЕТРТЕФБГЙС ЬОФТПРЙЙ ТБУ - УНПФТЕОБ Ч ЛО.: Prigogine I. From Being to Becoming-Time and Complexity in the Physical Sciences. - San Francisco: W. H. Freeman

Илья Романович Пригожин - бельгийской физико-химик, основатель брюссельской школы исследователей в области физической химии и статистической механики, основоположник общей теории диссипативных систем. Его научное творчество тесно связана с философией, с производством инновационных идей на грани науки и философии. К ним относятся, например, новое осмысление идеи времени, пересмотр роли и места науки в культуре, а также самой парадигмальной природы науки. Обогащая методологию науки новой парадигмой, проецируя его на современный изменчивый мир с присущей ему темпоральністю, нестабильностью, неровно-важностью, Г. Пригожин сделал важный вклад в философское осмысление радикальных изменений, происходящих в современной науке и культуре.

Порядок из хаоса: Новый диалог "ЧЕЛОВЕКА С ПРИРОДОЙ"

Наше видение природы претерпевает радикальные изменения в сторону разнообразия, темпоральності и сложности. Долгое время в западной науке доминировала механическая картина мироздания. Сейчас мы осознаем, что живем в плюралистическом мире. Существуют явления, которые представляются нам детерминированными и обратимыми. Такие, например, движение маятника без трения или Земли вокруг Солнца. Но существуют также и необратимые процессы, которые как бы несут в себе "стрела времени". Например, если слить две такие жидкости, как спирт и вода, то из опыта известно, что со временем, они перемешиваются. Обратный процесс - спонтанное разделение смеси на чистую воду и чистый спирт-никогда не наблюдается. В связи с этим, смешивания спирта и воды - необратимый процесс. Вся химия, по существу, составляет нескончаемый перечень таких необратимых процессов.

Понятно, что, помимо детерминированных процессов, некоторые фундаментальные явления, такие, например, как биологическая эволюция или эволюция человеческих культур, должны содержать некий вероятностный элемент. Даже ученый, глубоко убежденный в правильности детерминированных описаний, вряд ли осмелится утверждать, что в момент Большого взрыва, т. е. возникновения известной нам Вселенной, дата выхода в свет нашей книги была начертана на скрижалях законов природы. Классическая физика рассматривала фундаментальные процессы как детерминированные и обратимые. Процессы, связанные со случайностью или необратимостью, считались досадными исключениями из общего правила. Сейчас мы видим, насколько важную роль играют повсюду необратимые процессы и флюктуации.

Хотя западная наука была стимулом к необычайно творческого диалога между человеком и природой, некоторые последствия влияния естественных наук на общечеловеческую культуру далеко не всегда носили позитивный характер. Например, противопоставление "двух культур" в значительной мере обусловлено конфликтом между вневременным подходом классической науки, который доминировал в подавляющем большинстве социальных и гуманитарных наук. Но за последние десятилетия в естествознании произошли значительные перемены, столь же неожиданные, как рождение геометрии или грандиозная картина мироздания, нарисованная в "Математических началах натуральной философии" И. Ньютона. Мы все глубже осознаем, что на всех уровнях - от элементарных частиц до космологии - случайность и необратимость играют важную роль, значение которой возрастает по мере расширения наших знаний. Наука вновь открывает для себя время. Описания этой концептуальной революции и посвящена наша книга.

Революция, о которой идет речь, происходит на всех уровнях: на уровне элементарных частиц, в космологии, на уровне так называемой макроскопической физики, охватывающей физику и химию атомов или молекул, рассматриваемых либо индивидуально, либо глобально, как это делается, например, при изучении жидкостей или газов. Возможно, что именно на макроскопическом уровне концептуальный переворот в естествознании прослеживается наиболее отчетливо. Классическая динамика и современная химия подвергаются в наше время период качественных изменений. Если бы несколько лет назад мы спросили физика, какие явления позволяет объяснить его наука и какие проблемы остаются открытыми, он, вероятно, ответил бы, что мы еще не достигли адекватного понимания элементарных частиц или космологической эволюции, но распоряжаемся достаточно удовлетворительными знаниями о процессах, которые проходят в масштабах, промежуточных между субмікроспічними и космологическими уровнями. Ныне меньшинство исследователей, к которым принадлежат авторы этой книги и которых с каждым днем становится все больше, не разделяют подобного оптимизма: мы лишь начинаем понимать уровень природы, на котором живем, и именно этому уровню в нашей книге уделено основное внимание.

Для правильной оценки концептуального перевооружения физики, которое происходит, необходимо рассмотреть этот процесс в надлежащей исторической перспективе. История науки - это отнюдь не линейная развертка серии последовательных приближений к некоторой последовательной истины. История науки богата на противоречия, неожиданные повороты. Значительную часть нашей книги мы посвятили схеме исторического развития западной науки, начиная с И. Ньютона, то есть с событий трехвековой давности. Историю науки мы стремились вписать в историю мысли, с тем чтобы интегрировать ее с эволюцией западной культуры на протяжении последних трех веков. Только так мы можем за положительными качествами оценить неповторимость того момента, в который нам выпало жить.

В научном наследстве, которое нам досталось, есть два фундаментальных вопроса, на которые нашим предшественникам не удалось найти ответ. Один из них - вопрос об отношении хаоса и порядка. Известный закон возрастания энтропии описывает мир как непрестанно эволюционирует от порядка к хаосу. Вместе с тем, как показывает биологическая или социальная эволюция, сложное возникает из простого. Как такое может быть? Каким образом из хаоса может возникнуть структура? В ответе на этот вопрос сейчас удалось пройти достаточно далеко. Теперь нам известно, что нерівноваженість - поток вещества или энергии - может быть источником порядка.

Но есть и другое, еще более фундаментальное вопросы. Классическая или квантовая физика описывает мир как обратимый во времени, статический.

В их описании нет места эволюции ни к порядку, ни к хаосу.

Информация, которая изымается из динамики, остается постоянной во времени. Налицо явное противоречие между статической картиной динамики и эволюционной парадигмой термодинамики. Что такое необратимость? Что такое энтропия? Вряд ли найдутся другие вопросы, которые бы так же часто обсуждались в ходе развития науки. Лишь теперь мы начинаем достигать той степени понимания и того уровня знаний, которые позволяют в той или иной мере ответить на эти вопросы. Порядок и хаос - сложные понятия. Единицы, используемые в статистическом описании, который дает динамика, отличаются от единиц, которые требуются для создания эволюционной парадигмы, что характеризуется ростом энтропии. Переход от одних единиц к другим приводит к новому пониманию материи. Материя становится "активной", она порождает необратимые процессы, а они в свою очередь, организуют материю.

От мысли классической науки удалось избавиться современной науке? Как правило, от тех, что были сосредоточены вокруг базисной тезиса, согласно которому на определенном уровне мир устроен просто и подчиняется обратимым во времени фундаментальным законам. Похожая позиция в настоящее время является очень примитивной. Разделять такую позицию означает уподобляться тем, кто видит в зданиях лишь нагромождение кирпича. Но с той же кирпичей можно построить и фабричный корпус, и дворец, и храм. Лишь рассматривая здание как единое целое, мы можем воспринимать его как продукт эпохи, культуры, общества, стиля. Есть еще одна вполне очевидная проблема: поскольку мир, который нас окружает, никем не создан, перед нами возникает необходимость дать такое описание его мельчайших "кирпичиков" (т. е. микроскопической структуры мира), который бы объяснил процесс самосозидания.

Применен классической наукой поиск истины сам по себе не может быть прекрасным примером той раздвоенности, которая четко прослеживается на протяжении всей истории западноевропейской мысли. Традиционно неизменный мир идей считался, если воспользоваться выражением Платона, "просветленным солнцем умодосяжним". В том самом смысле научную рациональность было принято усматривать лишь в вечных и неизменных законах. Все временное и преходящее рассматривалось как иллюзия. Ныне подобные взгляды считаются ошибочными. Мы выяснили, что в природе существенную роль играет далеко не иллюзорная, а вполне реальная необратимость, лежащая в основе большинства процессов самоорганизации. Обратимость и жесткий детерминизм, в мире что нас окружает, применяются только в простых предельных случаях. Необратимость и случайность отныне рассматриваются не как исключение, а как общее правило.

В наши дни основной акцент научных исследований переместился с субстанции на отношение, связь, время.

Такая резкая смена перспективы абсолютно не является результатом принятия необоснованного решения. В физике нас принуждают к нему непредсказуемые открытия. Кто же мог ожидать, что многие (если даже не все) элементарные частицы окажутся нестабильными? Кто бы мог подумать, что с экспериментальным подтверждением гипотезы о Вселенной, которая расширяется, у нас возникнет возможность прослеживать историю мира, что нас окружает, как единого целого?

До конца XX века. мы научились глубже понимать смысл двух великих революций в естествознании, которые оказывают решающее влияние на формирование современной физики: создание квантовой механики и теории относительности.

Обе революции начались с попыток исправить классическую механику путем введения в нее только что изобретенных универсальных постоянных. Ныне ситуация изменилась. Квантовая механика дала нам теоретическую основу для описания бесконечных преобразований одних частиц в другие. Аналогично общая теория относительности стала тем фундаментом, опираясь на который мы можем проследить тепловую историю Вселенной на ее ранних стадиях.

По своему характеру наша Вселенная плюралистический, комплексный. Структуры могут исчезать, но могут и возникать. Одни процессы на определенном уровне знаний допускают описание с помощью детерминированных уравнений, другие требуют применения вероятных соображений.

Как можно преодолеть явное противоречие между детерминированным и случайным? Ведь мы живем в едином мире. Как будет показано далее, мы только теперь начинаем заслуженно оценивать значение всего ряда проблем, связанных с необходимостью и случайностью. Кроме того, мы предоставляем совершенно другого, а иногда вовсе противоположному, чем классическая физика, значение разным наблюдением и описанным нами явлениям. Мы уже упоминали о том, что по традиции, которая существовала ранее, фундаментальные процессы было принято считать детерминированными и обратимыми, а процессы, так или иначе связанные со случайностью или необратимостью, трактовать как исключения из общего правила. Сейчас мы повсюду видим, насколько важную роль играют необратимые процессы, флуктуации. Модели, рассмотрением которых занималась классическая физика, соответствуют, как мы теперь понимаем, лишь предельным ситуациям. их можно создавать искусственно, поместив систему в ящик и дождавшись, пока она не достигнет состояния равновесия.

Искусственное может быть детерминированным и обратимым. Естественное непременно содержит элементы случайности и необратимости. Это замечание приводит нас к новому взгляду на роль материи во Вселенной. Материя - не пассивная субстанция, описываемая в рамках механистической картины мира, ей также свойственна спонтанная активность. Отличие нового взгляда на мир от традиционного такая глубокая, что, как уже упоминалось в предисловии, мы можем с полным основанием говорить о новом диалоге человека с природой.

Два потомки теории теплоты по прямой линии - наука о превращении энергии из одной формы в другую и теория тепловых машин - совместными усилиями привели к созданию первой "неклассической науки" - термодинамики. Ни один из вкладов в сокровищницу науки, внесенных термодинамикой, не может сравниться по новизне со знаменитым вторым началом термодинамики, с появлением которого в физику впервые вошла "стрела времени". Введение одностороннего направленного времени было частью более широкого движения западноевропейской мысли. XIX ст. по праву может быть назван веком эволюции: биология, геология и социология уделять все большее внимание изучению процессов возникновения новых структурных элементов, увеличения тяжести. В отношении термодинамики, то в ее основе лежит различие между двумя типами процессов: обратимыми процессами, не зависящими от направления времени, и необратимыми процессами, зависимыми от направления времени. С примерами обратимых и необратимых процессов мы ознакомимся в дальнейшем. Понятие энтропии для того и было введено, чтобы отличать обратимые процессы от необратимых: энтропия возрастает только в результате необратимых процессов.

в Течение XIX века. в центре внимания было исследование конечного состояния термодинамической эволюции. Термодинамика XIX века. была равновесной термодинамикой. На неравновесные процессы смотрели как на второстепенные детали, возмущения, мелкие несущественные подробности, не заслуживающие неспеціальне изучения. В настоящее время ситуация полностью изменилась. Сейчас мы знаем, что вдали от равновесия могут спонтанно возникать новые типы структур. В сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса, к порядку. Могут возникать новые динамические состояния материи, отражающие взаимодействие системы с окружающей средой. Эти новые структуры мы назвали диссипативными, стремясь подчеркнуть конструктивную роль диссипативных процессов в их образовании.

В нашей книге приведены некоторые из методов, разработанных в последние годы для описания того, как возникают и эволюционируют диссипативные структуры. При изложении их мы впервые встретимся с такими ключевыми словами, как "нелинейность", "неустойчивость" "флуктуация", что проходят через всю книгу, как лейтмотив. Эта триада стала проникать в наши взгляды на мир и за пределами физики и химии.

При обсуждении противоположности между естественными и гуманитарными науками мы процитировали слова Исайи Берлина. Специфическое и уникальное Берлин противопоставлял том, что повторяется, и общем. Замечательная особенность рассматриваемых нами процессов заключается в том, что при переходе от равновесных условий к сильно неравновесным мы переходим от того, что повторяется, и общего к уникальному и специфическому.

Действительно, законы равновесия имеют большую общность: они универсальны. Что же касается поведения материи вблизи состояния равновесия, то ему свойственна "повторяемость". В то же время вдали от равновесия начинают действовать различные механизмы, соответствующие возможности возникновения диссипативных структур различных типов. Например, вдали от равновесия мы можем наблюдать возникновение химического часов - химических реакций с характерной когерентною периодическим изменением концентрации реагентов. Вдали от равновесия наблюдаются также процессы самоорганизации, приводящие к образованию неоднородных структур - неравновесных кристаллов.

Следует особо подчеркнуть, что такое поведение сильно неравновесных систем довольно неожиданная. Действительно, каждый из нас интуитивно представляет себе, что химическая реакция протекает примерно так: молекулы "плавают" в пространстве, сталкиваются и, перестраиваясь в результате столкновения, превращаются в новые молекулы. Хаотическое поведение молекул можно уподобить картине, которую рисуют атомісти, описывая движение пылинок, танцующих в воздухе. Но в случае химического часов мы сталкиваемся с химической реакцией, которая протекает совсем не так, как нам подсказывает интуиция. Несколько упрощая ситуацию, можно утверждать, что в случае химического часов все молекулы изменяют свое химическое тождество одновременно, через правильные промежутки времени. Если представить себе, что молекулы исходного вещества и продукта реакции окрашены соответственно в синий и красный цвета, то мы увидели бы, как изменяется их цвет в ритме химического часов.

Понятно, что такую периодическую реакцию невозможно описать, ввиду интуитивные представления о хаотической поведение молекул. Возник порядок нового, ранее неизвестного плетня. В этом случае уместно говорить о новой когерентность, механизм "коммуникации" между молекулами. Но связь такого типа может возникать только в сильно неравновесных условиях. Интересно отметить, что подобная связь очень распространен в мире живого. Его существование можно принять за саму основу определения биологической системы.

Необходимо также добавить, что тип дисипативної структуры в значительной мере зависит от условий ее образования. Существенную роль в отборе механизма самоорганизации могут играть внешние поля, например, гравитационное поле Земли или магнитное поле.

Мы начинаем понимать, каким образом, исходя из химии, можно построить сложные структуры, сложные формы, в том числе такие, которые способны стать предшественниками живого. В сильно неравновесных явлениях достоверно установлено весьма важное и неожиданное свойство материи: впредь физика с оправданной основанием может описывать структуры как формы адаптации системы к внешним условиям. Со своего рода механизмом передбіологічної адаптации мы встречаемся в простейших химических системах. Антропоморфной языке можно сказать, что в состоянии равновесия материя "слепая", тогда как в сильно неравновесных условиях она обретает способность воспринимать различия во внешнем мире (например, слабые гравитационные и электрические поля) и "учитывать" их в своем функционировании.

Разумеется, проблема возникновения жизни и теперь остается весьма сложной, и мы не ожидаем в недалеком будущем какого-нибудь простого ее решения. Однако при нашем подходе жизнь перестает противостоять "обычным" законам физики, бороться против них, чтобы избежать предполагаемой судьбы - гибели. Наоборот, жизнь предстает перед нами как своеобразное проявление тех самых условий, в которых находится наша биосфера, в том числе нелинейности химических реакций и сильно неравновесных условий, налагаемых на биосферу солнечной радиацией.

Мы подробно обсуждаем понятия, что даст возможность описывать образование диссипативных структур, например понятия теории бифуркаций. Нужно отметить, что вблизи точек бифуркации в системах наблюдаются значительные флуктуации. Такие системы как будто "колеблющихся" перед выбором одного из нескольких путей эволюции, и знаменитый закон больших чисел, если понимать его как обычно, перестает действовать. Небольшая флуктуация может послужить началом эволюции в совершенно новом направлении, которое резко изменит все поведение макроскопической системы. Неуклонно напрашивается аналогия с социальными явлениями и даже с историей. Далеки от мысли сравнивать случайность и необходимость, мы считаем, что оба аспекта играют важную роль в описании нелинейных сильно неравновесных систем.

Резюмируя, можно сказать, что в двух первых частях нашей книги мы рассматриваем два противоположных взгляда на физический мир: статистический подход классической динамики и эволюционный взгляд, основанный на использовании понятия энтропии. Конфронтации между такими противоположными подходами не избежать. ее долго сдерживал традиционный взгляд на оборачиваемость как на иллюзию сближения. Время в оставленный без времени Вселенную ввел человек. Для нас неприемлемо такое решение проблемы обратимости, при котором необратимость приближается к иллюзии или является следствием тех или иных приближений, поскольку, как мы теперь знаем, необратимость может быть источником порядка, когерентности, организации.

Конфронтация частичного подхода классической механики и эволюционного подхода стала неизбежной. Остром столкновение этих двух противоположных подходов к описанию мира посвящена третья часть нашей книги. В ней мы подробно рассматриваем традиционные попытки решения проблем необратимости, примененные сначала в классической, а затем и квантовой механике. Особую роль при этом сыграли пионерские работы Больцмана и Гиббса. Однако мы можем с полным основанием утверждать, что проблема необратимости под многими углами зрения осталась нерешенной.

Ныне мы можем с большей точностью судить об истоках понятия времени в природе, и это обстоятельство приводит к далеко идущим последствиям. Необратимость вводится в макроскопический мир вторым началом термодинамики - законом неспадання энтропии. Теперь мы понимаем второе начало термодинамики и на микроскопическом уровне. Как будет показано далее, второе начало термодинамики выполняет функции правила отбора - ограничения начальных условий, распространяющиеся в последующие моменты времени по законам динамики. Тем самым второе начало вводит в наше описание природы новый, который не сводится к чему-нибудь элемент. Второе начало термодинамики не противоречит динамике, но не может быть выведено из нее.

Уже Больцман понимал, что между вероятностью и необратимостью должен существовать тесная связь. Различие между прошлым и будущим и, следовательно, необратимость могут входить в описание системы только в том случае, если система ведет себя достаточно випадно. Наш анализ подтверждает эту мысль. Действительно, что такое "стрела" времени в детермінічному описании природы? В чем ее значение? Если будущее как-то содержится в настоящем, в котором вложенное и прошлое, то что, собственно, означает "стрела" времени? "Стрела" времени является проявлением того факта, что будущее не задано, т. е. того, что, по словам французского поэта Поля Валери, "время является конструкцией".

Наш повседневный жизненный опыт показывает, что между временем и пространством есть коренное отличие. Мы можем передвигаться из одной точки пространства в другую, но не в состоянии повернуть время вспять. Мы не можем переставить прошлое и будущее. Как мы увидим в дальнейшем, это ощущение невозможности обратить время приобретает теперь точного научного значения. Допустимые состояния отделены от состояний, за вторым законом термодинамики, бесконечно широким ентропийним (барьером). В физике есть много других барьеров. Одним из них является скорость света. По современным представлениям, сигналы не могут распространяться быстрее скорости света. Существование этого барьера весьма важно: если бы его не было, причинность рассыпалась бы в прах. Аналогично энтропий-ный барьер является предпосылкой, позволяющей дать точный физический смысл (содержание) связи. Представьте себе, что случилось бы, если бы наше будущее стало прошлым каких-то других людей! <...>

Но, возможно, самый важный прогресс заключается в том, что проблема строения, порядка возникает теперь перед нами в иной перспективе. "Информация" в том виде, в котором она поддается определению в терминах динамики, остается постоянной по времени. Это звучит парадоксально. Если мы смешаем две жидкости, то никакой "эволюции" при этом не произойдет, хотя разделить их, не прибегая к помощи какого-либо внешнего устройства, не представляется возможным. Наоборот, закон неспадання энтропии описывает перемешивание двух жидкостей как эволюцию к "хаоса", или "беспорядок", - до наиболее вероятного состояния. Теперь мы имеем все необходимое для того, чтобы доказать взаимную непротиворечивость обоих описаний: говоря об информации или порядок, необходимо каждый раз переопределять единицы, которые мы определяем. Важный новый факт заключается в том, что теперь мы можем установить точные правила перехода от единиц одного типа к единицам другого типа. Иначе говоря, нам удалось получить микроскопическое формулировку эволюционной парадигмы, выражаемой вторым началом термодинамики. Этот вывод представляется нам важным, ведь эволюционная парадигма охватывает всю химию, а также существенные части биологии и социальных наук. Истина открылась нам недавно. Процесс пересмотра основных понятий, что происходит сейчас в физике, еще далек от завершения. Наша цель заключается вовсе не в том, чтобы осветить признанные достижения науки, ее стабильные и достоверно установленные результаты. Мы хотим привлечь внимание читателя к новых понятий, которые возникли в ходе научной деятельности, ее перспектив и новых проблем. Мы отчетливо осознаем, что находимся лишь в самом начале нового этапа научных исследований.

Мы считаем, что находимся на пути к новому синтезу, новой концепции природы. Возможно, когда-нибудь нам удастся слить воедино западную традицию, которая придает первостепенное значение експериментації и количественным формулировкам, и такую традицию, как китайская, с ее представлениями о спонтанно изменяющийся мир. В начале вступления мы привели слова Жака Моно о одиночестве человека во Вселенной. Вывод, к которому он приходит, гласит: "Древний союз [человека и природы] разрушен. Человек наконец сознает свое одиночество в равнодушной бездне Вселенной, из которой она возникла по воле случая".

Моно, очевидно, прав. Древний союз разрушен полностью. Но мы усматриваем свое предназначение не в том, чтобы плакать по прошлому, а в том, чтобы в невероятном разнообразии современных естественных наук попытаться найти путеводную нить, ведущую к какой-то единой картины мира. Для классической науки такой моделью были часы, для XIX века. - периода промышленной революции - паровой двигатель. Что станет символом для нас? Наш идеал, пожалуй, наиболее полно выражает скульптора - от искусства древней Индии или Центральной Америки до Колумбової суток, до современного искусства. В некоторых наиболее совершенных образцах скульптуры, например в фигуре танцующего Шивы или в миниатюрных моделях храмов Герреро, отчетливо чувствуется поиск трудноуловимого перехода от покоя к движению, от времени остановившегося к времени текущему. Мы уверены в том, что именно эта конфронтация определяет неповторимое своеобразие нашего времени. <...>

Связав ентротопію с динамической системой, мы тем самым возвращаемся к концепции Больцмана: возможность (вероятность) достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при описании тердинамічної эволюции, в состоянии равновесия ведут себя хаотично. В отличие от этого в слабо неравновесных условиях возникают корреляция и когерентность.

Теперь мы подходим к одному из наших главных выводов: на всех уровнях, будь то уровень макроскопической физики, уровень флуктуаций или микроскопический уровень, источником порядка является неравенство. Неравенство, то есть то, что порождает "порядок из хаоса". Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Только в крайних случаях, например, в розрідженних газах, оно обретает простого содержания в соответствии с пионерских работ Больцмана.

Сейчас наша уверенность в "рациональности" природы частично подвергается сомнению в результате быстрого роста естествознания в наше время. Как было отмечено в "Предисловие", наше видение природы претерпело существенных изменений. Ныне мы учитываем такие изменения, как множественность, зависимость от времени и сложность. Некоторые изменения, произошедшие в наших взглядах на мир, описанные в этой книге.

Мы искали общие, всеохватывающие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, подвергаются различным преобразованиям. Занимаясь поиском симметрии, мы с удивлением заметили на всех уровнях - от элементарных частиц до биологии и экологии - процессы, сопровождаются нарушением симметрии. Мы описали в нашей книге столкновение между динамикой с присущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направленность времени.

На наших глазах возникает новое единство: необратимость есть источником порядка на всех уровнях. Необратимость является тем механизмом, который создает порядок из хаоса.

Книга лауреата Нобелевской премии Ильи Пригожина и Изабеллы Стенгерс «Порядок из хаоса. Новый диалог человека с природой» - заметное явление в современной научно-философской литературе. По своему жанру она достаточно необычна, поскольку авторы выступают в ней как философы и историки науки. Повествуя о новом диалоге человека с природой и вместе с тем не предлагая готовых решений, она побуждает читателя к самостоятельным размышлениям над затронутыми в ней проблемами.

Главная тема книги «Порядок из хаоса» - переоткрытие понятия времени и конструктивная роль, которую необратимые процессы играют в явлениях природы. Возрождение проблематики времени в физике произошло после того, как термодинамика была распространена на необратимые процессы и найдена новая формулировка динамики, позволяющая уточнить значение необратимости на уровне фундаментальных законов физики.

Оглядываясь на прошлое, мы ясно видим, что понятие закона, доставшееся в наследство от науки XVII в., формировалось в результате изучения простых систем, точнее, систем с периодическим поведением, таким, как движение маятника или планет. Необычайные успехи динамики связаны со все более изящной и абстрактной формулировкой инструментов описания, в центре которого находятся такие системы. Именно простые системы являются тем частным случаем, в котором становится достижимым идеал исчерпывающего описания. Знание закона эволюции простых систем позволяет располагать всей полнотой информации о них, т. е. по любому мгновенному состоянию системы однозначно предсказывать ее будущее и восстанавливать прошлое. Тогда считалось, что ограниченность знаний, конечная точность, с которой можно описывать системы, не имеют принципиального значения. Предельный переход от финитного знания к идеальному описанию, подразумевающему бесконечную точность, не составлял особого труда и не мог привести к каким-либо неожиданностям.

Ныне же при рассмотрении неустойчивых динамических систем проблема предельного перехода приобретает решающее значение: только бесконечно точное описание, подразумевающее, что все знаки бесконечного десятичного разложения чисел, задающих мгновенное состояние системы, известны, могло бы позволить отказаться от рассмотрения поведения системы в терминах случайности и восстановить идеал детерминистического динамического закона.

В истории западной мысли господствующее положение занимает конфликт, связанный с понятием времени, - противоречие между инновационным временем раскрепощения человека и периодически повторяющимся временем стабильного материального мира, в котором любое изменение, любое новшество с необходимостью оказываются не более чем видимостью. Как ни странно, но именно это противоречие послужило причиной острой дискуссии между Лейбницем и выразителем взглядов Ньютона английским философом Кларком. Переписка между Лейбницем и Кларком позволяет представить взгляды Ньютона в новом свете: природа для Ньютона была не просто автоматом, а несла в себе активное производительное начало. Вместе с тем очень хорошо описана утверждаемая диалектическим материализмом необходимость преодоления противопоставления «человеческой», исторической сферы материальному миру, принимаемому как атемпоральный. Наметившееся сближение этих двух противоположностей будет усиливаться по мере того, как будут создаваться средства описания внутренне эволюционной Вселенной, неотъемлемой частью которой являемся и мы сами. Нет сомнения в том, что описанная в книге трансформация физических представлений по своему значению выходит за пределы физических наук и может внести вклад в понимание той исторической реальности, которая является объектом диалектической мысли.

Значение книги «Порядок из хаоса» состоит в том, что ее авторы не только находят новые аргументы для критики ньютоновской модели, но и показывают, что претензии ньютонианства на объяснение реальности,- и поныне не утратившие силу, хотя и ставшие значительно более умеренными, - совместимы с гораздо более широкой современной картиной мира, созданной усилия­ми последующих поколений ученых. Пригожин и Стенгерс показывают, что так называемые «универсальные законы» отнюдь не универсальны, а применимы лишь к локальным областям реальности. Именно к этим областям наука приложила наибольшие усилия.

Суть приводимых Пригожиным и Стенгерс аргументов можно было бы резюмировать следующим образом. Авторы книги «Порядок из хаоса» показывают, что в машинный век традиционная наука уделяет основное внимание устойчивости, порядку, однородности и равновесию. Она изучает главным образом замкнутые системы и линейные соотношения, в которых малый сигнал на входе вызывает равномерно во всей области определения малый отклик на выходе.

Неудивительно, что при переходе от индустриального общества с характерными для него огромными затратами энергии, капитала и труда к обществу с высокоразвитой технологией, для которого критическими ресурсами являются информация и технологические нововведения, неминуемо возникают новые научные модели мира.

Пригожинская парадигма особенно интересна тем, что она акцентирует внимание на аспектах реальности, наиболее характерных для современной стадии ускоренных социальных изменений: разупорядоченности, неустойчивости, разнообразии, неравновесности, нелинейных соотношениях, в которых малый сигнал на входе может вызвать сколь угодно сильный отклик на выходе, и темпоральности - повышенной чувствительности к ходу времени.

Глава 1. ТРИУМФ РАЗУМА

Ньютон не пытался объяснить гравитацию - существование всемирного тяготения было принято Ньютоном как неоспоримый факт. Аналогичным образом любая другая дисциплина должна строиться таким образом, чтобы за ее исходную точку был принят некоторый центральный необъяснимый факт. Ободренные авторитетом Ньютона медики сочли возможным обновить виталистскую концепцию и говорить о «жизненной силе», использование которой придало бы описанию жизненных явлений столь желанную последовательность и систематичность. Этой же цели призвано служить сродство - особая, сугубо химическая сила, якобы проявляющаяся при взаимодействии молекул.

Все остальное - не более чем изящная словесность (причем зачастую словесность ньютоновская): гармония, безраздельно царящая в мире звезд, избирательное сродство и столь же избирательная враждебность, порождающие видимость «общественной жизни» химических соединений, представали как явления, распространяющиеся и на человеческое общество. Неудивительно поэтому, что тот период казался золотым веком классической науки. Не подлежит сомнению, однако, что золотой век классической науки миновал. Ныне мы начинаем более отчетливо видеть пределы ньютоновской рациональности. Возникает новая, более последовательная концепция науки и природы.

Койре пишет следующее: «…есть и нечто такое, за что ответственность может быть возложена на Ньютона или, точнее, не на одного Ньютона, а на всю современную науку, - раскол нашего мира на два чуждых мира». Я уже упоминал о том, что современная наука разрушила барьеры, отделявшие небо от Земли, объединила и унифицировала Вселенную. Все это так. Но я упоминал и о том, что, опрокидывая барьеры, наука подменяла наш мир качества и чувственного восприятия, мир, в котором мы живем, любим и умираем, другим миром - миром количества, воплощенной геометрии, миром, в котором, хотя он и вмещает в себя все, нет места для человека. Так мир науки - реальный мир - стал отчужденным и полностью оторванным от мира жизни. Наука не в состоянии не только объяснить этот мир, но даже оправдаться, назвав его «субъективным».

Трагедия современного разума, «разгадавшего загадку Вселенной», состоит в том, что одну загадку он заменил другой - загадкой самого себя.

Ньютоновский синтез. Что кроется за энтузиазмом современников Ньютона, их убеждением в том, что тайна мироздания, истина о природе наконец открыта? Прежде всего это представление о науке как о способе воздействия на окружающий мир. Ньютоновская наука - наука активная. Одним из ее источников стали знания, накопленные средневековыми ремесленниками, строителями машин. Она дает средства для систематического воздействия на мир, для предсказания и изменения хода протекающих в природе процессов, созидания устройств и механизмов, способных обуздать и использовать на благо человека силы и материальные ресурсы природы. Появление ньютоновской системы ознаменовало триумф новой универсальности: оно позволило унифицировать то, что до Ньютона казалось разрозненным и бессвязным.

Экспериментальный диалог. Для того чтобы осуществить намерение познать мир недостаточно с должным почтением относиться к наблюдаемым фактам. Открытый современной наукой экспериментальный диалог с природой подразумевает активное вмешательство, а не пассивное наблюдение. Перед учеными ставится задача научиться управлять физической реальностью, вынуждать ее действовать в рамках «сценария» как можно ближе к теоретическому описанию.

Экспериментальная процедура может становиться и орудием чисто теоретического анализа. Эта ее разновидность известна под названием «мысленного эксперимента». Один из наиболее знаменитых мысленных экспериментов был предложен Эйнштейном (так называемый «поезд Эйнштейна»). Представим себе наблюдателя, едущего в поезде и измеряющего скорость света, испускаемого фонарями на обочине дороги, т.е. движущегося со скоростью с в системе отсчета, относительно которой поезд движется со скоростью v. По классической теореме сложения скоростей наблюдатель, едущий в поезде, должен был бы приписать свету, распространяющемуся в направлении движения поезда, скорость с – v. Однако классические рассуждения содержат явную нелепость, выявить которую и должен предложенный Эйнштейном мысленный эксперимент. В теории относительности скорость света выступает как универсальная постоянная природы. В любой инерциальной системе отсчета скорость света всегда одна и та же.

Миф у истоков науки. Основатели современной науки прозорливо усматривали в диалоге между человеком и природой важный шаг к рациональному постижению природы. Но претендовали они на гораздо большее. Галилей и те, кто пришел после него, разделяли убеждение в том, что наука способна открывать глобальные истины о природе. По их мнению, природа не только записана на математическом языке, поддающемся расшифровке с помощью надлежаще поставленных экспериментов, но и сам язык природы единствен. Отсюда уже недалеко до вывода об однородности мира и, следовательно, доступности постижения глобальных истин с помощью локального экспериментирования. Сложность природы была провозглашена кажущейся, а разнообразие природы - укладывающимся в универсальные истины, воплощенные для Галилея в математических законах движения.

Пределы классической науки. Какое место занимает картина мира физиков-теоретиков среди всех возможных таких картин? Благодаря использованию языка математики эта картина удовлетворяет высоким требованиям в отношении строгости и точности выражения взаимозависимостей. Но зато физик вынужден сильно ограничивать свой предмет, довольствуясь изображением наиболее простых, доступных нашему опыту явлений, тогда как все сложные явления не могут быть воссозданы человеческим умом с той точностью и последовательностью, которые необходимы физику-теоретику. Высшая аккуратность, ясность и уверенность - за счет полноты. Но какую прелесть может иметь охват такого небольшого среза природы, если наиболее тонкое и сложное малодушно оставляется в стороне?

Когда же в физику в качестве объекта положительного знания входят случайность, сложность и необратимость, мы отходим от прежнего весьма наивного допущения о существовании прямой связи между нашим описанием мира и самим миром. Объективность в теоретической физике обретает более топкое значение.

Глава 2. УСТАНОВЛЕНИЕ РЕАЛЬНОГО

Законы Ньютона. Со времен Галилея одной из центральных проблем физики было описание ускорения. На языке Ньютона найти ускорение означает определить различные силы, действующие на точки рассматриваемой системы. Второй закон Ньютона (F = ma) утверждает, что сила, приложенная к любой материальной точке, пропорциональна производимому ею ускорению. Триумфом ньютоновской науки явилось открытие универсальности гравитации: одна и та же сила «всемирного тяготения», или гравитации, определяет и движение планет и комет в небе, и движение тел, падающих на поверхность Земли.

Интегрирование законов движения позволяет найти траектории, по которым движутся частицы. К числу основных характеристик траекторий относятся регулярность, детерминированность и обратимость. Общие законы движения позволяют вывести из заданного начального состояния бесконечную серию состояний, проходимых системой со временем, подобно тому, как логика позволяет выводить заключения из исходных посылок. Замечательная особенность траекторий динамической системы состоит в том, что, коль скоро силы известны, одного-единственного состояния оказывается достаточно для полного описания системы - не только ее будущего, но и прошлого. Общность законов динамики уравновешивается произволом в выборе начальных условий.

Выяснилось, однако, что с присущим динамике свойством обратимости связана определенная трудность, всё значение которой было в должной мере осознано лишь после создания квантовой механики: воздействие и измерение принципиально необратимы.

Всякий знает, какие нелепости возникают на экране, если пустить киноленту от конца к началу: сгоревшая дотла спичка вспыхивает ярким огнем и, пылая, превращается в полномерную спичку с нетронутой серной головкой, осколки разбитой вдребезги чернильницы сами собой собираются в целую чернильницу, внутрь которой чудесным образом втягивается лужица пролитых было чернил, толстые ветви на дереве на глазах утончаются, превращаясь в тоненькие молодые побеги. В мире классической динамики все эти события считаются столь же вероятными, как и события, отвечающие нормальному ходу явлений. Мир, в котором все траектории обратимы, - поистине странный мир.

Движение и изменение. Принятием законов Ньютона природа становится законопослушной, покорной и предсказуемой вместо того, чтобы быть хаотичной, нерегулярной и непредсказуемой.

Язык динамики. В XIX в. формулировка второго закона Ньютона была обобщена с помощью введения новой функции- гамильтониана H. Функция Гамильтона есть не что иное, как полная энергия системы, т.е. сумма ее кинетической и потенциальной энергии. Но полная энергия представлена как функция не координат и скоростей, обозначаемых, по традиции, соответственно q и dq/dt, а так называемых канонических переменных - координат и импульсов, которые принято обозначать q и р. В простейших случаях, таких, как свободная частица, между скоростью и импульсом существует явное соотношение (p = mdq/dt), но в общем случае скорость и импульс связаны более сложной зависимостью. Одна функция (гамильтониан) Н(р, q) полностью описывает динамику системы. Вид функции H несет в себе все наше эмпирическое знание системы. Зная гамильтониан, мы можем (по крайней мере в принципе) решить все возможные задачи. Например, изменения координаты и импульса во времени равны просто производным от H по р и q. Гамильтонова формулировка динамики - одно из величайших достижений в истории науки.

Канонические уравнения обратимы: обращение времени математически эквивалентно обращению скорости. Канонические уравнения консервативны: гамильтониан, выражающий полную энергию системы в канонических переменных (координатах и импульсах), сохраняется при изменениях координат и импульсов во времени. В случае гамильтоновой динамики с самого первого мгновения значений различных инвариантов движения заданы. Ничего нового не может ни «случиться», ни «произойти». Так в гамильтоновой динамике мы сталкиваемся с одним из тех драматических моментов в истории науки, когда описание природы сводится почти к статической картине.

Открытие Брунса и Пуанкаре показало, что динамические системы не изоморфны. Простые интегрируемые системы допускают разложение на невзаимодействующие подсистемы, но в общем случае исключить взаимодействия невозможно.

Демон Лапласа. Проблематика демона Лапласа связана не с вопросом о том, возможно ли детерминистическое предсказание хода событий в действительности, а в том, возможно ли оно de jure. В контексте классической динамики детерминистическое описание может быть недостижимым на практике, тем не менее оно остается пределом, к которому должна сходиться последовательность все более точных описаний.

Глава 3. ДВЕ КУЛЬТУРЫ

Дидро и дискуссия о живом. Дидро считал, что, прежде чем возлагать надежды на достижение самосогласованного видения мира, науке необходимо понять, что такое жизнь. В противоположность рациональной механике, утверждающей, что материальная природа есть не что иное, как инертная масса и движение, Дидро апеллирует к одному из самых древних источников вдохновения физиков, а именно: к росту, дифференциации и организации эмбриона. Может ли инертная масса, пусть даже ньютоновская, «одушевленная» силами гравитационного взаимодействия, быть отправным пунктом для организованных активных локальных структур? Зрелище развивающегося зародыша вполне достаточно, чтобы опровергнуть претензии рациональной механики на универсальность.

Протесты химиков и медиков против сведения физиками процессов жизнедеятельности к мерному тиканью механизмов и спокойному проявлению универсальных законов приобрели во времена Дидро широкое распространение. Универсальные законы применимы к живому лишь в том смысле, что они обрекают все живое на смерть и разрушение. Материя, из которой состоят живые существа, настолько хрупка, настолько легко поддается распаду, что, если бы ею управляли только универсальные законы физики, то она ни на миг не могла бы противостоять разложению и тлену.

Критическая ратификация научного знания Кантом. По мнению Канта, существуют два уровня реальности: феноменальный, соответствующий науке, и ноуменальный, отвечающий этике. Феноменальный порядок создается человеческим разумом. Ноуменальный порядок трансцендентален по отношению к человеческому разуму; он соответствует духовной реальности, на которую опирается этическая и религиозная жизнь человека. По Канту, необходимо ввести различие между ощущениями, воспринимаемыми нами непосредственно из внешнего мира, и объективным «рациональным» знанием. Ignoramus et ignorabimus - лейтмотив позитивистов

Новое начало. В первой части нашей книги мы описали, с одной стороны, диалог с природой, который сделала возможным классическая наука, а с другой стороны, ненадежное положение науки в системе культуры в целом. Существует ли вывод из создавшегося довольно затруднительного положения? В этой главе мы обсудили некоторые попытки достижения альтернативных способов познания. Мы рассмотрели также позитивистскую точку зрения, которая отделяет науку от реальности.

Для древних природа была источником мудрости. Средневековая природа говорила о боге. В новые времена природа стала настолько безответной, что Кант счел необходимым полностью разделить науку и мудрость, науку и истину. Этот раскол существует на протяжении двух последних столетий. Настала пора положить ему конец. Что касается науки, то она созрела для этого. Первым шагом к возможному воссоединению знания, как нам сейчас представляется, стало создание в XIX в. теории теплоты, открытие законов, или «начал», термодинамики. Именно термодинамика претендует на роль хронологически первой «науки о сложности».

ЧАСТЬ ВТОРАЯ. НАУКА О СЛОЖНОСТИ

Глава 4. Энергия и индустриальный век

Тепло - соперник гравитации. С момента появления теории теплопроводности математика, физика и ньютоновская наука перестали быть синонимами. В физике сосуществуют две универсалии: тепло и гравитация. Более того, как был вынужден признать позднее Конт, эти две универсалии - антагонисты. Гравитация действует на инертную массу, которая подчиняется гравитации, не испытывая ее действия иным путем, кроме как через движение, которое приобретает или передает. Тепло преобразует вещество, определяет изменения состояния и вызывает изменения внутренних свойств. Закон Фурье описывает постепенное установление равновесия. Теплопроводность приводит к все большему выравниванию распределения температуры до тех пор, пока распределение во всем теле не станет однородным. Всякий знает, что выравнивание температуры - процесс необратимый.

Принцип сохранения энергии. В 1847 г. Джоуль понял, что связи, обнаруженные между выделением или поглощением тепла, электричеством и магнетизмом, протеканием химических реакций, а также биологическими объектами, носят характер «превращения». Идея превращения, опирающаяся на постулат о количественном сохранении «чего-то» при его качественных изменениях, обобщает то, что происходит при механическом движении. Как мы уже знаем, полная энергия сохраняется, в то время как потенциальная энергия переходит, превращается в кинетическую, и наоборот. Джоуль определил общий эквивалент для физико-химических трансформаций, что позволило измерить сохраняющуюся величину. Впоследствии эта величина стала известна как «энергия». Сохранение энергии при самых различных преобразованиях, претерпеваемых физическими, химическими и биологическими системами, стало путеводным принципом в исследовании новых процессов. Самый важный вклад термодинамики в естествознание - понятие необратимости.

Тепловые машины и стрела времени. Мир космология Томсона описывала как машину, в которой тепло превращается в движение лишь ценой определенных необратимых потерь и бесполезной диссипации (рассеивания). Соответственно уменьшались различия в природе, способные производить механический эффект. Мир использует эти различия при переходе от одного превращения к другому и стремится к конечному состоянию теплового равновесия - «тепловой смерти».

Рождение энтропии. В 1865 г. Клаузиус ввел новое понятие - энтропия. Первоначально Клаузиус намеревался четко разграничить понятия сохранения и обратимости. В отличие от механических превращений, для которых обратимость и сохранение совпадают, при физико-химическом превращении энергия может сохраняться даже в том случае, если преобразование необратимо. Это, в частности, относится к трению, когда движение превращается в тепло, нам необходимо выйти за рамки закона сохранения энергии и найти способ, позволяющий выразить различие между «полезными» обменами энергией в цикле Карно и «диссипированной» энергией, теряемой необратимо. Именно такую возможность и предоставляет введенная Клаузиусом новая функция, получившая название «энтропия» и обычно обозначаемая буквой S.

Для изолированных систем будущее всегда расположено в направлении возрастания энтропии. Какая система может быть изолирована лучше, чем наша Вселенная? Эта идея легла в основу космологической формулировки первого и второго начал термодинамики, предложенной Клаузиусом в 1865 г.: энергия мира постоянна; энтропия мира стремится к максимуму. Возрастающая энтропия перестает быть синонимом потерь. Теперь она относится к естественным процессам внутри системы. Под влиянием этих процессов система переходит в термодинамическое «равновесие», соответствующее состоянию с максимумом энтропии.

Обратимые преобразования принадлежат классической науке в том смысле, что определяют возможность воздействия на систему, управления системой. Динамическим объектом можно управлять, варьируя начальные условия. Аналогичным образом термодинамическим объектом, определяемым в терминах обратимых преобразований, можно управлять, изменяя граничные условия. Необратимость проявляется в форме неуправляемых изменений, происходящих в тех случаях, когда система выходит из-под контроля.

Необратимые процессы можно рассматривать как последние остатки самопроизвольной внутренней активности, проявляемой природой, когда человек с помощью экспериментальных устройств пытается обуздать ее. Таким образом, «отрицательное» свойство - диссипация - показывает, что в отличие от динамических объектов термодинамические объекты управляемы не до конца. Иногда они «выходят из повиновения», претерпевая самопроизвольное изменение.

Рассмотрим приращение энтропии dS за короткий интервал времени dt. В случае идеальной и реальной тепловой машины ситуация совершенно различная. В первом случае dS можно полностью выразить через теплообмен между машиной и окружающей средой. Можно поставить специальные опыты, в которых система будет отдавать тепло вместо того, чтобы поглощать его. Соответствующее приращение энтропии при этом лишь изменит знак. Такую составляющую полного приращения энтропии мы обозначим deS. Она обратима в том смысле, что может быть и положительной, и отрицательной. В реальных машинах мы сталкиваемся с совершенно иной ситуацией. В них, помимо обратимого теплообмена, происходят необратимые процессы: тепловые потери, трение и т.д. Они приводят к увеличению энтропии, или производству энтропии, внутри системы. Увеличение энтропии, которое мы обозначим diS, не может изменять знак при обращении теплообмена с внешним миром. Как все необратимые процессы (например, теплопроводность), производство энтропии всегда происходит в одном и том же направлении. Иначе говоря, величина diS может быть только положительной или обращаться в пуль в отсутствие необратимых процессов.

Для термодинамической системы все изменения не эквивалентны. В этом и состоит физический смысл разложения dS = deS + diS. Самопроизвольное изменение diS, направленное к равновесию, отличается от изменения deS, определяемого и управляемого варьированием граничных условий (например, температуры окружающей среды). В случае изолированной системы равновесие выступает в роли притягивающего множества, или «аттрактора», неравновесных состояний. Следовательно, наше первоначальное утверждение допускает обобщение: эволюция к состоянию-аттрактору отличается от всех других изменений, в особенности от изменений, обусловленных варьированием граничных условий.

В природе невозможны те процессы, при которых природа дает меньшее предпочтение конечному состоянию, чем начальному. Предельный случай представляют обратимые процессы; в них природа испытывает одинаковое предпочтение как к начальному, так и к конечному состоянию, и поэтому переход из одного состояния в другое может происходить в обоих направлениях. Сколь чуждым выглядит такой язык по сравнению с языком динамики! В динамике система изменяется вдоль заданной раз и навсегда траектории, не забывая начальную точку (так как начальные условия определяют всю траекторию при любых значениях времени). В случае же изолированной системы все неравновесные ситуации порождают эволюцию к равновесному состоянию одного и того же типа. К моменту достижения равновесия система забывает свои начальные условия, т.е. способ, которым она была приготовлена.

Мы сталкиваемся, таким образом, с двумя принципиально различными описаниями: динамикой, применимой к миру движения, и термодинамикой, наукой о сложных системах, наделенных внутренней способностью эволюционировать в сторону увеличения энтропии.

Принцип порядка Больцмана. Второе начало термодинамики содержит два принципиально важных элемента: 1) «негативный», выражающий запрет на некоторые процессы, т.е. их невозможность (тепло может распространяться от горячего источника к холодному, но не от холодильника к нагревателю); 2) «положительный», конструктивный. Второй элемент является следствием первого: запрет на некоторые процессы позволяет нам ввести функцию (энтропию), монотонно возрастающую для изолированных систем. Энтропия ведет себя как аттрактор для изолированных систем.

Проблемы перехода от микроскопического уровня к макроскопическому оказались необычайно плодотворными для физики в целом. Первым вызов принял Больцман. Тонкая физическая интуиция подсказывала ему, что необходимо выработать какие-то новые понятия, которые позволили бы обобщить физику траекторий, распространив ее на системы, описываемые термодинамикой. Следуя по стопам Максвелла, Больцман принялся искать концептуальные новации в теории вероятности.

Больцман первым понял, что необратимое возрастание энтропии можно было бы рассматривать как проявление все увеличивающегося молекулярного хаоса, постепенного забывания любой начальной асимметрии, поскольку асимметрия приводит к уменьшению числа комплексов по сравнению с состоянием, отвечающим максимальному значению вероятности Р. Придя к такому выводу, Больцман решил отождествить энтропию S с числом комплексов: каждое макроскопическое состояние энтропия характеризует числом способов, которым оно может быть достигнуто. Знаменитое соотношение Больцмана S=k*lnP выражает ту же идею количественно. Коэффициент пропорциональности k в этой форме - универсальная постоянная, известная под названием «постоянная Больцмана». Результаты Больцмана означают, что необратимое термодинамическое изменение есть изменение в сторону более вероятных состояний и что состояние–аттрактор есть макроскопическое состояние, соответствующее максимуму вероятности.

Забывание начальных условий возможно потому, что, как бы ни эволюционировала система, она, в конечном счете, перейдет в одно из микроскопических состояний, соответствующих макроскопическому состоянию хаоса и максимальной симметрии, поскольку именно такие макроскопические состояния составляют подавляющее большинство всех возможных микроскопических состояний. Коль скоро наиболее вероятное состояние достигнуто, система отклоняется от него лишь на небольшие расстояния и на короткие промежутки времени. Иначе говоря, система лишь флуктуирует около состояния–аттрактора.

Карно и Дарвин. Равновесные структуры можно рассматривать как результат статистической компенсации активности микроскопических элементов (молекул, атомов). На глобальном уровне равновесные структуры, по определению, инертны. По той же причине они «бессмертны»: коль скоро равновесная структура образовалась, ее можно изолировать и поддерживать бесконечно долго без дальнейшего взаимодействия с окружающей средой. Но при изучении биологической клетки или города мы сталкиваемся с совершенно другой ситуацией: эти системы не только открыты, но и существуют только потому, что они открыты. Их питают потоки вещества и энергии, которые поступают из внешнего мира. Мы можем изолировать кристалл, но если города и клетки отрезать от окружающей среды, они погибнут.

Как, например, совместить дарвиновскую эволюцию (статистический отбор редких событий) со статистическим исчезновением всех индивидуальных особенностей, всех редких событий, о котором говорит Больцман? Интерпретация Больцмана влечет за собой забывание начальных условий, «разрушение» начальных структур, тогда как дарвиновская эволюция ассоциируется с самоорганизацией, с неуклонно возрастающей сложностью.

Равновесная термодинамика была первым ответом физики на проблему сложности природы. Этот ответ получил свое выражение в терминах диссипации энергии, забывания начальных условий и эволюции к хаосу. Какое значение имеет эволюция живых существ в мире, описываемом термодинамикой и все более беспорядочном? Какова связь между термодинамическим временем, обращенным к равновесию, и временем, в котором происходит эволюция к все возрастающей сложности?

Глава 5. Три этапа в развитии термодинамики

Поток и сила. Приращение энтропии допускает разложение в сумму двух членов: члена deS, связанного с обменом между системой и остальным миром, и члена diS, описывающего производство энтропии вследствие необратимых процессов внутри системы. Второй член всегда положителен, за исключением термодинамического равновесия, когда он обращается в нуль. Для изолированной системы (deS = 0) состояние равновесия соответствует состоянию с максимумом энтропии.

Могут ли химические процессы дать нам ключ к постижению различия между поведением кристалла и клетки? Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической физике мы можем, по крайней мере, представлять себе обратимые процессы, такие, как движение маятника без трения. Пренебрежение необратимыми процессами в динамике всегда соответствует идеализации, но, по крайней мере, в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изучением которых она занимается (химические превращения, характеризуемые скоростями реакций), необратимы. По этой причине химию невозможно свести к лежащей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эквивалентные роли.

Линейная термодинамика. Линейная термодинамика описывает стабильное, предсказуемое поведение систем, стремящихся к минимальному уровню активности, совместимому с питающими их потеками. Из того, что линейная неравновесная термодинамика так же, как и равновесная термодинамика, допускает описание с помощью потенциала, а именно производства энтропии, следует, что и при эволюции к равновесию, и при эволюции к стационарному состоянию система «забывает» начальные условия. Каковы бы ни были начальные условия, система рано или поздно перейдет в состояние, определяемое граничными условиями.

Вдали от равновесия. До тех пор пока состояние-аттрактор определяется минимумом потенциала (например, производство энтропии), его устойчивость гарантирована. Правда, флуктуация может вывести систему из этого минимума. Но тогда второе начало термодинамики вынудит систему вернуться в исходный минимум. Таким образом, существование термодинамического потенциала делает систему «невосприимчивой» к флуктуациям. Располагая потенциалом, мы описываем «стабильный мир», в котором системы, эволюционируя, переходят в статичное состояние, установленное для них раз и навсегда. Но когда термодинамические силы, действуя на систему, становятся достаточно «большими» и вынуждают ее покинуть линейную область, гарантировать устойчивость стационарного состояния или его независимость от флуктуации было бы опрометчиво.

В таких состояниях определенные флуктуации вместо того, чтобы затухать, усиливаются и завладевают всей системой, вынуждая ее эволюционировать к новому режиму, который может быть качественно отличным от стационарных состояний, соответствующих минимуму производства энтропии. Такого рода явления хорошо известны в гидродинамике - теории течений. Например, давно известно, что при определенной скорости ламинарное течение может смениться турбулентным.

Долгое время турбулентность отождествлялась с хаосом или шумом. Сегодня мы знаем, что это не так. Хотя в макроскопическом масштабе турбулентное течение кажется совершенно беспорядочным, или хаотическим, в микроскопическом масштабе оно высокоорганизованно. Множество пространственных и временных масштабов, на которых разыгрывается турбулентность, соответствует когерентному поведению миллионов и миллионов молекул. С этой точки зрения переход от ламинарного течения к турбулентности является процессом самоорганизации. Принцип порядка Больцмана устанавливает связь энтропии с вероятностью (числом комплексов Р). Применимо ли это соотношение в данном случае? Когерентное движение означает, что многие молекулы движутся почти с одинаковыми скоростями (разброс скоростей мал). Такому распределению соответствует столь малое число комплексов Р, что вероятность возникновения самоорганизации почти равна нулю. В сильно неравновесных условиях понятие вероятности, лежащее в основе больцмановского принципа порядка, становится неприменимым: наблюдаемые структуры не соответствуют максимуму комплексов. Тенденция к выравниванию и «забыванию» начальных условий перестает быть общей тенденцией.

Мы ввели новое понятие - диссипативная структура, чтобы подчеркнуть тесную и на первый взгляд парадоксальную взаимосвязь, существующую в таких ситуациях, с одной стороны, между структурой и порядком, а с другой - между диссипацией, или потерями.

За порогом химической неустойчивости. Еще раз подчеркнем, как сильно спонтанное образование пространственных структур противоречит законам равновесной физики и принципу порядка Больцмана. Число комплексов, соответствующих таким структурам, чрезвычайно мало по сравнению с числом комплексов, отвечающих равномерному распределению. Но неравновесные процессы могут приводить к ситуациям, кажущимся немыслимыми с классической точки зрения.

Первое знакомство с молекулярной биологией. Образование колоний коллективных амеб - типичный пример того, что можно было бы назвать «порядком через флуктуации»: возникновение «центра притяжения», испускающего циклическую АМФ, сигнализирует о потере устойчивости нормальной питательной среды, т.е. об исчерпании запаса питательных веществ. То, что при нехватке пищевого ресурса любая амеба может начать испускание химических сигналов - циклической АМФ - и, таким образом, стать «центром притяжения» для остальных амеб, соответствует случайному характеру флуктуации. В данном случае флуктуация усиливается и организует среду.

Бифуркации и нарушение симметрии. Рассмотрим более подробно, как возникает самоорганизация и какие процессы начинают происходить, когда ее порог оказывается превзойденным. В равновесном или слабо неравновесном состоянии существует только одно стационарное состояние, зависящее от значений управляющих параметров. Обозначим управляющий параметр через λ (им может быть, например, концентрация вещества В в брюсселяторе. Проследим за тем, как изменяется состояние системы с возрастанием значения В. Увеличивая концентрацию В, мы как бы уводим систему все дальше и дальше от равновесия. При некотором значении В мы достигаем порога устойчивости термодинамической ветви. Обычно это критическое значение называется точкой бифуркации.

Рассмотрим некоторые типичные бифуркационные диаграммы. В точке бифуркации В термодинамическая ветвь становится неустойчивой относительно флуктуации (рис. 1). При критическом значении λС управляющего параметра λ система может находиться в трех различных стационарных состояниях: С, Е и D. Два из них устойчивы, третье неустойчиво. Очень важно подчеркнуть, что поведение таких систем зависит от их предыстории. Начав с малых значений управляющего параметра λ и медленно увеличивая их, мы с большой вероятностью опишем траекторию ABC. Наоборот, начав с больших значений концентрации Х и поддерживая постоянным значение управляющего параметра λ, мы с высокой вероятностью придем в точку D. Таким образом, конечное состояние зависит от предыстории системы. До сих пор история использовалась при интерпретации биологических и социальных явлений. Совершенно неожиданно выяснилось, что предыстория может играть роль и в простых химических процессах.

Рассмотрим бифуркационную диаграмму, изображенную на рис. 2. От предыдущей диаграммы она отличается тем, что в точке бифуркации появляются два устойчивых решения. В связи с этим, естественно, возникает вопрос: по какому пути пойдет дальнейшее развитие системы после того, как мы достигнем точки бифуркации? У системы имеется «выбор»: она может отдать предпочтение одной из двух возможностей, соответствующих двум неравномерным распределениям концентрации X в пространстве.

Каскады бифуркаций и переходы к хаосу. В некоторых случаях последовательность бифуркаций приводит к необратимой эволюции и детерминированность характеристических частот порождает все большую случайность, обусловленную огромным числом частот, участвующих в процессе. Сравнительно недавно внимание ученых привлек необычайно простой путь к хаосу, получивший название последовательность Фейгенбаума. Обнаруженная Фейгенбаумом закономерность относится к любой системе, поведение которой характеризуется весьма общим свойством, а именно: в определенной области значений параметров система действует в периодическом режиме с периодом Т; при переходе через порог период удваивается и становится равным 2Т, при переходе через следующий порог период в очередной раз удваивается и становится равным 4Т и т.д. Таким образом, система характеризуется последовательностью бифуркаций удвоения периода. Последовательность Фейгенбаума - один из типичных маршрутов, ведущих от простого периодического режима к сложному апериодическому, наступающему в пределе при бесконечном удвоении периода. Фейгенбаум открыл, что этот маршрут характеризуется универсальными постоянными, значения которых не зависят от конкретных особенностей механизма, коль скоро система обладает качественным свойством удвоения периода. (Подробнее о работе Фейгенбаума см. Джеймс Глейк. Хаос. Создание новой науки.)

При значении управляющего параметра порядка λС система может находиться в большом числе устойчивых и неустойчивых режимов, «историческая» траектория, по которой эволюционирует система при увеличении управляющего параметра характеризуется чередованием устойчивых областей, где доминируют детерминистические законы, и неустойчивых областей вблизи точек бифуркации, где перед системой открывается возможность выбора одного из нескольких вариантов будущего. И детерминистический характер кинетических уравнений, позволяющих вычислить заранее набор возможных состояний и определить их относительную устойчивость, и случайные флуктуации, «выбирающие» одно из нескольких возможных состояний вблизи точки бифуркации, теснейшим образом взаимосвязаны. Эта смесь необходимости и случайности и составляет «историю» системы.

От Евклида к Аристотелю. Одной из наиболее интересных особенностей диссипативных структур является их когерентность. Система ведет себя как единое целое и как если бы она была вместилищем дальнодействующих сил. Несмотря на то что силы молекулярного взаимодействия являются короткодействующими (действуют на расстояниях порядка 10–8 см), система структурируется так, как если бы каждая молекула была «информирована» о состоянии системы в целом. Жизнь - результат спонтанной самоорганизации, происходящей при благоприятных условиях.

Сильно неравновесная система может быть названа организованной не потому, что в ней реализуется план, чуждый активности на элементарном уровне или выходящий за рамки первичных проявлений активности, а по противоположной причине: усиление микроскопической флуктуации, происшедшей в «нужный момент», приводит к преимущественному выбору одного пути реакции из ряда априори одинаково возможных. Следовательно, при определенных условиях роль того или иного индивидуального режима становится решающей. Обобщая, можно утверждать, что поведение «в среднем» не может доминировать над составляющими его элементарными процессами. В сильно неравновесных условиях процессы самоорганизации соответствуют тонкому взаимодействию между случайностью и необходимостью, флуктуациями и детерминистическими законами. Мы считаем, что вблизи бифуркаций основную роль играют флуктуации или случайные элементы, тогда как в интервалах между бифуркациями доминируют детерминистические аспекты.

Глава 6. ПОРЯДОК ЧЕРЕЗ ФЛУКТУАЦИИ

Флуктуации и химия. От детерминистических, обратимых процессов физика движется к стохастическим и необратимым процессам. Это изменение перспективы оказывает сильнейшее влияние на химию. Химические процессы, в отличие от траекторий классической динамики, соответствуют необратимым процессам. Химические реакции приводят к производству энтропии. Между тем классическая химия продолжает опираться на детерминистическое описание химической эволюции. Основным «оружием» теоретиков в химической кинетике являются дифференциальные уравнения, которым удовлетворяют концентрации веществ, участвующих в реакции. Зная эти концентрации в некоторый начальный момент времени (а также соответствующие граничные условия, если речь идет о явлениях, зависящих от пространственных переменных, например о диффузии), мы можем вычислить их в последующие моменты времени. Интересно отметить, что такой детерминистический взгляд на химию перестает соответствовать действительности, стоит лишь перейти к сильно неравновесным процессам.

Когда система, эволюционируя, достигает точки бифуркации, детерминистическое описание становится непригодным. Флуктуация вынуждает систему выбрать ту ветвь, по которой будет происходить дальнейшая эволюция системы. Переход через бифуркацию - такой же случайный процесс, как бросание монеты. Возможно только статистическое описание. Такая ситуация в корне меняет традиционное представление об отношении между микроскопическим уровнем, описываемым в терминах атомов и молекул, и макроскопическим уровнем, описываемым в терминах таких глобальных переменных, как концентрация. Во многих случаях флуктуации вносят лишь малые поправки.

В качестве примера рассмотрим газ, N молекул которого заключены в сосуд объемом V. Разделим этот объем на две равные части. Чему равно число молекул X в одной из них? Здесь X - «случайная» переменная, и можно ожидать, что ее значение достаточно близко к N/2. Основная теорема теории вероятностей (так называемый закон больших чисел) позволяет оценить ошибку, вносимую флуктуациями. По существу, закон больших чисел утверждает, что при измерении X мы можем ожидать значение порядка. При большом N ошибка, вносимая флуктуациями, может быть также большой, но относительная ошибка, вносимая флуктуациями, стремится к нулю при больших N. Как только система становится достаточно большой, закон больших чисел позволяет отличать средние значения от флуктуации (последние становятся пренебрежимо малыми).

В случае неравновесных процессов встречается прямо противоположная ситуация. Флуктуации определяют глобальный исход эволюции системы. Вместо того чтобы оставаться малыми поправками к средним значениям, флуктуации существенно изменяют средние значения.

Некоторым читателям, должно быть, известны соотношения неопределенности Гейзенберга, выражающие несколько неожиданным образом вероятностный аспект квантовой теории. Возможность одновременного измерения координат и импульса в квантовой теории отпадает, тем самым нарушается и классический детерминизм. Считалось, однако, что это никак не сказывается на описании таких макроскопических объектов, как живые системы. Но роль флуктуаций в сильно неравновесных системах показывает, что это не так. Случайность остается весьма существенной и на макроскопическом уровне.

Флуктуации и корреляции. Закон больших чисел позволяет нам вычислять корреляции между числом молекул X в двух точках пространства, находящихся на заданном расстоянии друг от друга. Как показывают вычисления, в равновесных условиях такая корреляция не существует. Вероятность одновременно найти молекулу X в точке r и молекулу X’ в точке r’ (отличной от точки r) равна произведению вероятности найти молекулу X в точке r и вероятности найти молекулу X’ в точке r’ (мы рассматриваем случай, когда расстояние между точками r и r’ велико по сравнению с радиусом межмолекулярного взаимодействия). Один из наиболее неожиданных результатов недавних исследований состоял в том, что в неравновесной области ситуация резко изменяется. Появляются дальнодействующие корреляции. Частицы, находящиеся на макроскопических расстояниях друг от друга, перестают быть независимыми. «Отзвуки» локальных событий разносятся по всей системе.

Дальнодействующие корреляции организуют систему еще до того, как происходит макроскопическая бифуркация. Мы снова возвращаемся к одной из главных идей нашей книги: к неравновесности как источнику порядка. В данном случае ситуация особенно ясна. В равновесном состоянии молекулы ведут себя независимо: каждая из них игнорирует остальные.

Активность материи связана с неравновесными условиями, порождаемыми самой материей.

Усиление флуктуации. Как показывают теоретические исследования и численное моделирование, критические размеры ядра возрастают с эффективностью механизмов диффузии, связывающих между собой все области системы. Иначе говоря, чем быстрее передается сигнал по «каналам связи» внутри системы, тем выше процент безрезультатных флуктуации и, следовательно, тем устойчивее система. Этот аспект проблемы критического размера означает, что в подобных ситуациях «внешний мир», т.е. все, что окружает флуктуирующую область, всегда стремится погасить флуктуации. Затухнут ли флуктуации или усилятся, зависит от эффективности «канала связи» между флуктуирующей областью и внешним миром. Таким образом, критические размеры определяются конкуренцией между «интегративной силой» системы и химическими механизмами, приводящими к усилению флуктуации. Описанная нами модель применима, в частности, к результатам, полученным в последнее время in vitro при экспериментальных исследованиях зарождения раковых опухолей. В этих исследованиях отдельная раковая клетка рассматривается как флуктуация, способная спонтанно и непрестанно появляться и размножаться, посредством репликации. Возникнув, раковая клетка сталкивается с популяцией цитотоксических клеток и либо погибает, либо выживает. В зависимости от значений различных параметров, характеризующих процессы репликации и гибели раковых клеток, мы можем предсказывать либо регресс, либо разрастание опухоли.

Вопрос о пределах сложности системы поднимался довольно часто. Действительно, чем сложнее система, тем более многочисленны типы флуктуаций, угрожающих ее устойчивости. Позволительно, однако, спросить, как же в таком случае существуют такие сложные системы, какими является экологическая или социальная структура человеческого общества? Каким образом им удается избежать перманентного хаоса? Частичным ответом на подобные вопросы может быть ссылка на стабилизирующее влияние связи между частями систем, процессов диффузии. В сложных системах, где отдельные виды растений, животных и индивиды вступают между собой в многочисленные и разнообразные взаимодействия, связь между различными частями системы не может не быть достаточно эффективной. Между устойчивостью, обеспечиваемой связью, и неустойчивостью из-за флуктуации имеется конкуренция. От исхода этой конкуренции зависит порог устойчивости.

Структурная устойчивость. В нашей книге отношению между микроскопическим и макроскопическим уделяется немало внимания. Одной из наиболее важных проблем в эволюционной теории является возникающая в итоге обратная связь между макроскопическими структурами и микроскопическими событиями: макроскопические структуры, возникая из микроскопических событий, должны были бы в свою очередь приводить к изменениям в микроскопических механизмах. Как ни странно, но в настоящее время наиболее понятные случаи относятся к ситуациям, возникающим в человеческом обществе. Когда мы прокладываем дорогу или строим мост, мы можем предсказать, как это скажется на поведении окрестного населения, а оно в свою очередь определяет изменения в характере и способах связи внутри региона. Такие взаимосвязанные процессы порождают очень сложные ситуации, и это обстоятельство необходимо сознавать, приступая к их моделированию.

Логистическая эволюция. Понятие структурной устойчивости находит широкое применение в социальных проблемах. Следует, однако, подчеркнуть, что всякий раз речь идет о сильном упрощении реальной ситуации, описываемой в терминах конкуренции между процессами саморепликации в среде с ограниченными пищевыми ресурсами. В экологии классическое уравнение, описывающее такую проблему, называется логистическим уравнением. Оно описывает, как эволюционирует популяция из N особей с учетом рождаемости, смертности и количества ресурсов, доступных популяции. Логистическое уравнение можно представить в виде dN/dt = rN(K–N) – mN, где r и m - характерные постоянные рождаемости и смертности, К - «несущая способность» окружающей среды. При любом начальном значении N система со временем выходит на стационарное значение N = K – m/r, зависящее от разности между несущей способностью среды и отношением постоянных смертности и рождаемости. При достижении этого стационарного значения наступает насыщение: в каждый момент времени рождается столько индивидов, сколько их погибает.

Мэй обратил внимание на одну замечательную особенность таких уравнений: несмотря на их простоту, они допускают необычайно много решений. При значениях параметра 0 < r < 2 наблюдается монотонное приближение к равновесию. При значениях параметра 2 < r < 2,444 возникает предельный цикл: наблюдается периодический режим с двухлетним периодом. При еще больших значениях параметра r возникают четырех-, восьмилетние и т.д. циклы, пока периодические режимы не переходят (при значениях r больше 2,57) в режим, который может быть назван только хаотическим. Мы имеем здесь дело с переходом к хаосу через серию бифуркаций удвоения периода. Возникает ли такой хаос в природе? Как показывают последние исследования, параметры, характеризующие реальные популяции в природе, не позволяют им достигать хаотической области.

Моделирование сложности. Несмотря на свою простоту, наша модель довольно точно передает некоторые особенности эволюции сложных систем. В частности, она проливает свет на природу трудностей «управления» развитием, зависящим от большого числа взаимодействующих элементов. Каждое отдельное действие или локальное вмешательство в систему обретает коллективный аспект, который может повлечь за собой совершенно неожиданные глобальные изменения. В настоящее время мы еще мало знаем о наиболее вероятной реакции системы на то или иное изменение. Очень часто отклик системы на возмущение оказывается противоположным тому, что подсказывает нам наша интуиция. Наше состояние обманутых ожиданий в этой ситуации хорошо отражает введенный в Массачусетском технологическом институте термин контринтуитивный.

Например, программа ликвидации трущоб вместо того, чтобы улучшить, еще более ухудшает ситуацию. Новые здания, построенные на месте снесенных, привлекают в район большее число людей, но если их занятость не обеспечивается, то они продолжают оставаться бедными, а их жилища становятся еще более перенаселенными. Мы приучены мыслить в терминах линейной причинности, но теперь нуждаемся в новых «средствах мышления».

Взять хотя бы различие, проводимое экологами между К-стратегиями и r-стратегиями (К и r – параметры, входящие в логистическое уравнение). Типичной для популяции жертв эволюцией является увеличение рождаемости r, а для популяции хищников – совершенствование способов ловли жертв, т.е. увеличение коэффициента К. Но повышение К в рамках логистической модели влечет за собой последствия, выходящие за круг явлений, описываемых логистическими уравнениями. K-стратегия подразумевает, что индивид все более повышает свою способность обучаться на опыте и хранить накопленную информацию в памяти. Иначе говоря, индивиды становятся все более сложными и со все более долгим периодом созревания и обучения. В свою очередь это означает, что индивиды становятся все более «ценными», представляющими более крупные вложения «биологического капитала» и уязвимыми на протяжении более продолжительного периода. Развитие «социальных» и «семейных» связей является, таким образом, логическим следствием К-стратегии.

К моделированию сложных явлений следует относиться с осторожностью: в сложных системах дефиниция самих сущностей и взаимодействия между ними в процессе эволюции могут претерпевать изменения. Не только каждое состояние системы, но и само определение ситемы в том виде, в каком ее описывает модель, обычно нестабильно.

Открытый мир. Традиционная интерпретация биологической и социальной эволюции весьма неудачно использует понятия и методы, заимствованные из физики, – неудачно потому, что они применимы в весьма узкой области физики и аналогия между ними и социальными или экономическими явлениями лишена всякого основания. Первый пример тому - парадигма оптимизации. И управление человеческим обществом, и действие селективных «воздействий» на систему направлены на оптимизацию тех или иных аспектов поведения или способов связи, но было бы опрометчиво видеть в оптимизации ключ к пониманию того, как выживают популяции и индивиды. Те, кто так думает, рискуют впасть в ошибку, принимая причины за следствия, и наоборот. Модели оптимизации игнорируют и возможность радикальных преобразований (т.е. преобразований, меняющих самую постановку проблемы и тем самым характер решения, которое требуется найти), и инерциальные связи, которые, в конечном счете, могут вынудить систему перейти в режим функционирования, ведущий к ее гибели.

Подобно доктринам, аналогичным «невидимой направляющей руке» Адама Смита, или другим определениям прогресса в терминах критериев максимизации или минимизации, модели оптимизации рисуют утешительную картину природы как всемогущего и рационального калькулятора, а также строго упорядоченной истории, свидетельствующей о всеобщем неукоснительном прогрессе. Для того чтобы восстановить и инерцию, и возможность неожиданных событий, т.е. восстановить открытый характер истории, необходимо признать ее фундаментальную неопределенность.

ЧАСТЬ ТРЕТЬЯ. ОТ БЫТИЯ К СТАНОВЛЕНИЮ

Глава 7. Переоткрытие времени

Возникновение квантовой механики. Первой физической теорией, действительно порвавшей с прошлым, стала квантовая механика. Она не только поместила нас в природу, но и присвоила нам атрибут «тяжелые», т.е. состоящие из макроскопически большого числа атомов. Дабы придать большую наглядность физическим следствиям из существования такой универсальной постоянной, как скорость света, Эйнштейн вообразил себя летящим верхом на фотоне. Но, как показала квантовая механика, мы слишком тяжелы для того, чтобы ездить верхом на фотонах или электронах.

Открытие дискретности, или квантованности, энергии оставалось вне связи с другими физическими явлениями до тех пор, пока Эйнштейн не предложил первую общую интерпретацию постоянной Планка. Эйнштейн понял, к сколь далеко идущим последствиям приводит открытие Планка для природы света, и выдвинул радикально новое понятие: дуализм волна - частица (для света).

Световая волна характеризуется частотой ν и длиной волны λ. Постоянная Планка позволяет переходить от частоты и длины волны к таким механическим величинам, как энергия ε и импульс р. Соотношения между ν и λ, а также между ε и р очень просты (ε = hν, p = h/λ), и оба содержат постоянную Планка h. Через двадцать лет после Эйнштейна Луи де Бройль обобщил дуализм волна - частица со света на материю. Это открытие послужило исходным пунктом современной формулировки квантовой механики. Атом (и это весьма существенно!) может находиться лишь на дискретных энергетических уровнях, соответствующих различным орбитам электронов.

Основная идея квантовой механики состоит в том, что гамильтониан так же, как и другие величины классической механики, например координаты q или импульсы р, надлежит рассматривать как операторы.

Соотношения неопределенности Гейзенберга. В квантовой механике каждой физической величине соответствует оператор, который действует на функции. Особенно важную роль играют собственные функции и собственные значения интересующего нас оператора. Собственные значения соответствуют допустимым численным значениям величины. В классической механике координаты и импульсы независимы в том смысле, что мы можем приписывать координате любое численное значение совершенно независимо от того, какое значение приписано нами импульсу. Но существование постоянной Планка h приводит к уменьшению числа независимых переменных. Следовательно, координаты и импульс квантовомеханической частицы уже более не являются независимыми переменными, как в классической механике. В квантовой механике не существует состояний, в которых эти две физические величины (т.е. координата q и импульс р) имели бы вполне определенное значение. Эту ситуацию, неизвестную в классической механике, выражают знаменитые соотношения неопределенности Гейзенберга. Мы можем измерять координату и импульс, но неопределенности в их значениях Δq и Δр связаны между собой неравенством Гейзеиберга ΔqΔp ≥ h. Если неопределенность Δq в положении частицы сделать сколь угодной малой, то неопределенность Δр в ее импульсе обратится в бесконечность, и наоборот.

Соотношение неопределенности Гейзенберга с необходимостью приводит к пересмотру понятия причинности. Мы можем определить координату с абсолютной точностью, но в тот момент, когда это происходит, импульс принимает совершенно произвольное значение, положительное или отрицательное. Это означает, что объект, положение которого нам удалось измерить абсолютно точно, тотчас же перемещается сколь угодно далеко. Локализация утрачивает смысл: понятия, составляющие самую основу классической механики, при переходе к квантовой механике претерпевают глубокие изменения.

Из того, что квантовая механика вынуждает нас говорить менее определенно о локализации объекта, следует, как часто подчеркивал Нильс Бор, необходимость отказа от классической физики. Для Бора постоянная Планка определяет взаимодействие между квантовой системой и измерительным устройством как единым целым, включая взаимодействие в процессе измерения, в результате которого мы получаем возможность приписывать измеряемым величинам численные значения. Все измерения, по Бору, подразумевают выбор измерительного устройства, выбор вопроса, на который требуется дать ответ. В этом смысле ответ, т.е. результат измерения, не открывает перед нами доступ к данной реальности. Нам приходится решать, какое измерение мы собираемся произвести над системой и какой вопрос наши эксперименты зададут ей. Следовательно, существует неустранимая множественность представлений системы, каждое из которых связано с определенным набором операторов. В свою очередь это влечет за собой отход квантовой механики от классического понятия объективности, поскольку с классической точки зрения существует единственное объективное описание. Оно является полным описанием системы «такой, как она есть», не зависящим от выбора способа наблюдения.

Бор сформулировал принципа дополнительности, который можно рассматривать как обобщение соотношений неопределенности Гейзенберга. Мы можем измерить либо координаты, либо импульсы, но не координаты и импульсы одновременно. Физическое содержание системы не исчерпывается каким-либо одним теоретическим языком, посредством которого можно было бы выразить переменные, способные принимать вполне определенные значения. Различные языки и точки зрения на систему могут оказаться дополнительными. Все они связаны с одной и той же реальностью, но не сводятся к одному-единственному описанию.

Реальный урок, который мы можем извлечь из принципа дополнительности (урок, важный и для других областей знания), состоит в констатации богатства и разнообразия реальности, превосходящей изобразительные возможности любого отдельно взятого языка, любой отдельно взятой логической структуры. Каждый язык способен выразить лишь какую-то часть реальности. Реальность, изучаемая физикой, есть не что иное, как конструкция нашего разума, а не только данность. Необходимо проводить различие между абстрактным понятием координаты или импульса, представляемых математически операторами, и их численной реализацией, достигаемой посредством эксперимента. Одна из причин противопоставления «двух культур», по-видимому, кроется в убеждении, что литература соответствует некоторой концептуализации реальности, чему-то вымышленному, в то время как наука выражает объективную реальность. Квантовая механика учит нас, что ситуация не столь проста. Существенный элемент концептуализации подразумевается на всех уровнях реальности.

Временная эволюция квантовых систем. Квантовая механика использует лишь половину переменных классической механики, поэтому классический детерминизм становится неприменимым, и в квантовой физике центральное место занимают статистические соображения. Мы снова сталкиваемся с весьма важным отклонением от классической теории: предсказуемы только вероятности, а не отдельные события. Второй раз за историю физики вероятности были привлечены для объяснения некоторых фундаментальных свойств природы. Впервые вероятности использовал Больцман в своей интерпретации энтропии. Однако предложенная Больцманом интерпретация отнюдь не исключала субъективную точку зрения, согласно которой «только» ограниченность наших знаний перед лицом сложности системы служит препятствием на пути к полному описанию.

Как и во времена Больцмана, использование вероятностей в квантовой механике оказалось неприемлемым для многих физиков (в том числе и для Эйнштейна), стремившихся к «полному» детерминистическому описанию. Сосуществование в квантовой механике обратимости и необратимости свидетельствует о том, что классическая идеализация, описывающая мир как замкнутую систему, на микроскопическом уровне невозможна. Необратимость входит в классическую физику, когда идеализация, в основе которой заложено понятие траектории, становится неадекватной.

Глава 8. Столкновение теорий

Больцмановский прорыв. Больцман намеревался дать «механическую» интерпретацию энтропии. Но особенно велико достижение Больцмана с концептуальной точки зрения в том, что он различие между обратимыми и необратимыми процессами, лежащее в основе второго начала термодинамики, низвел с макроскопического на микроскопический уровень. Изменение распределения скоростей из-за свободного движения молекул соответствует обратимой части, а вклад, вносимый в изменение распределения столкновениями, - необратимой части. Именно в этом и был, с точки зрения Больцмана, ключ к микроскопической интерпретации энтропии. Больцмановский прорыв стал решающим этапом в формировании нового научного направления - физики процессов. Временную эволюцию в уравнении Больцмана больше не определяет гамильтониан, зависящий от типа сил. В больцмановском подходе движение порождают функции, связанные с процессом, например сечение рассеяния.

Глава 9. Необратимость – энтропийный барьер

Энтропия и стрела времени. Люди в нерешительности колебались между двумя крайностями: исключением необратимости из физики (сторонником этого направления был Эйнштейн) и признанием необратимости как важной особенности природных явлений (выразителем этого направления стал Уайтхед со своей концепцией процесса). В настоящее время ни у кого не вызывает сомнений, что необратимость существует на макроскопическом уровне и играет важную конструктивную роль. Следовательно, в микроскопическом мире должно быть нечто проявляющееся на макроскопическом уровне, подобное необратимости. Микроскопическая теория должна учитывать два тесно связанных между собой элемента. Прежде всего в своих попытках построить микроскопическую модель энтропии, монотонно изменяющейся со временем, мы должны следовать Больцману. Именно такое изменение должно задавать стрелу времени. Возрастание энтропии изолированной системы должно выражать старение системы.

Необратимость как процесс нарушения симметрии. Мы можем сформулировать внутренний смысл второго начала. Оно обретает статус принципа отбора, утверждающего, что в природе реализуется и наблюдается лишь один из двух типов решений. В тех случаях, когда оно применимо, второе начало термодинамики выражает внутреннюю поляризацию природы. Оно не может быть следствием самой динамики. Второе начало является дополнительным принципом отбора, который, будучи реализованным, распространяется динамикой.

Мы можем констатировать, что существует тесная взаимосвязь между неустойчивостью и вероятностью.

Энтропийный барьер. Время течет в одном направлении: из прошлого в будущее. Теперь мы лучше понимаем, почему время невозможно «повернуть назад». Бесконечно высокий энтропийный барьер отделяет разрешенные начальные состояния от запрещенных. Барьер этот никогда не будет преодолен техническим прогрессом: он бесконечно высок. Нам не остается ничего другого, как расстаться с мечтой о машине времени, которая перенесет нас в прошлое.

Тепло и механическая энергия эквивалентны с точки зрения сохранения энергии, но отнюдь не второго начала. Кратко говоря, механическая энергия более «высокого сорта» (более когерентна), чем тепло, и всегда может быть превращена в тепло. Обратное неверно. Аналогичное различие существует на микроскопическом уровне между столкновениями и корреляциями. С точки зрения динамики столкновения и корреляции эквивалентны. Столкновения порождают корреляции, а корреляции могут разрушать последствия столкновений. Но между столкновениями и корреляциями имеется существенное различие. Мы можем управлять столкновениями и порождать корреляции, но мы не в состоянии так управлять корреляциями, чтобы уничтожить последствия, вызванные столкновениями в системе. Этого существенного различия недостает в динамике, но его можно учесть в термодинамике. Следует заметить, что термодинамика нигде не вступает в конфликт с динамикой. Термодинамика вносит важный дополнительный элемент в наше понимание физического мира.

Энтропия как принцип отбора. Нельзя не удивляться тому, как сильно микроскопическая теория необратимых процессов напоминает традиционную макроскопическую теорию. И в той, и в другой теории энтропия имеет негативный аспект. В макроскопической теории энтропия запрещает некоторые процессы, например перетекание тепла от холодного предмета к теплому. В микроскопической теории энтропия запрещает некоторые классы начальных условий. Различие между тем, что запрещено, и тем, что разрешено, поддерживается во времени законами динамики. Из негативного аспекта возникает позитивный: существование энтропии вместе с ее вероятностной интерпретацией. Необратимость не возникает более, как чудо, на некотором макроскопическом уровне. Макроскопическая необратимость лишь делает зримой ориентированную во времени поляризованную природу того мира, в котором мы живем. Как мы уже неоднократно подчеркивали, в природе существуют системы с обратимым поведением, допускающие полное описание в рамках законов классической или квантовой механики. Но большинство интересующих нас систем, в том числе все химические и, следовательно, все биологические системы, ориентированы во времени на макроскопическом уровне. Их отнюдь не иллюзорная однонаправленность во времени отражает нарушение временной симметрии на микроскопическом уровне. Второе начало приводит к новой концепции материи, к описанию которой мы сейчас переходим.

Активная материя. Связав энтропию с динамической системой, мы тем самым возвращаемся к концепции Больцмана: вероятность достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при описании термодинамической эволюции, в состоянии равновесия ведут себя хаотически. В отличие от этого в слабо неравновесных условиях возникают корреляции и когерентность. Здесь мы подходим к одному из наших главных выводов: на всех уровнях, будь то уровень макроскопической физики, уровень флуктуации или микроскопический уровень, источником порядка является неравновесность.

Подведем итоги достигнутого. В первой и второй части нашей книги неоднократно подчеркивалось, что на уровне макроскопических систем первостепенное значение имеет второе начало (и связанное с ним понятие необратимости). В третьей части мы стремились показать, что в настоящее время открывается возможность выхода за рамки макроскопического уровня, и продемонстрировать, что означает необратимость на микроскопическом уровне. Переход от макроскопического уровня к микроскопическому требует коренного пересмотра наших взглядов на фундаментальные законы физики. Только полностью избавившись от классических представлений (как в случае достаточно нестабильных систем), мы можем говорить о «внутренней случайности» и «внутренней необратимости».

Ситуация, с которой мы сталкиваемся, очень напоминает ситуацию, сложившуюся в квантовой механике. Существуют два возможных описания: либо мы выбираем точку в фазовом пространстве и тогда не знаем, какому разбиению она принадлежит и, следовательно, каков ее внутренний возраст, либо мы знаем внутренний возраст, но тогда нам известно только разбиение, а не точная локализация точки. После того как мы ввели внутреннее время Т, энтропию можно использовать как принцип отбора для перехода от начального описания с помощью функции распределения р к новому описанию с помощью функции распределения р’, которая обладает внутренней стрелой времени, согласующейся со вторым началом термодинамики. Основное различие между р и р’ проявляется в разложениях этих функций по собственным функциям оператора Т. В функцию р все внутренние возрасты независимо от того, принадлежат ли они прошлому или будущему, входят симметрично. В функции р’ в отличие от р прошлое и будущее играют различные роли: прошлое входит в р’, а будущее остается неопределенным. Асимметрия прошлого и будущего означает, что существует стрела времени. Новое описание обладает важной особенностью, заслуживающей того, чтобы ее отметить: начальные условия и законы изменения перестают быть независимыми. Состояние со стрелой времени возникает под действием закона, также наделенного стрелой времени и трансформирующего состояние, но сохраняющего стрелу времени.

Две великие революции в физике XX в. связаны с включением в фундаментальную структуру физики двух запретов, чуждых классической механике: невозможности распространения сигналов со скоростью больше скорости света и невозможности одновременного измерения координат и импульса. Неудивительно, что и второе начало, также ограничивающее наши возможности активного воздействия на материю, приводит к глубоким изменениям в структуре основных законов физики. Нам бы хотелось закончить третью часть нашей книги предостережением. Феноменологическую теорию необратимых процессов ныне можно считать вполне сложившейся. В отличие от нее микроскопическая теория» необратимых процессов делает лишь первые шаги.

ЗАКЛЮЧЕНИЕ. С земли на небо: новые чары природы

Открытая наука. Наука, несомненно, подразумевает активное воздействие на природу, но вместе с тем она является попыткой понять природу, глубже проникнуть в вопросы, которые задавало не одно поколение людей. Один из этих вопросов звучит как лейтмотив (почти как наваждение), на страницах этой книги, как, впрочем, и в истории естествознания и философии. Речь идет об отношении бытия и становления, неизменности и изменения. В начале нашей книги мы упоминали о вопросах, над которыми размышляли еще философы-досократики. Не накладывается ли изменение, порождающее все вещи и обрекающее их на гибель, извне на некую инертную материю? Не является ли изменение результатом внутренней независимой активности материи? Необходима ли внешняя побуждающая сила или становление внутренне присуще материи? Естествознание XVII в. встало в оппозицию к биологической модели спонтанной и автономной организации живых существ. Но тогда же естествознанию пришлось столкнуться с другой фундаментальной альтернативой. Является ли природа внутренне случайной? Не является ли упорядоченное поведение лишь преходящим результатом случайных столкновений атомов и их неустойчивых соединений?

Одним из главных источников неотразимой привлекательности современной науки было ощущение, что она открывала вечные законы, таившиеся в глубине нескончаемых преобразований природы, и тем навсегда изгнала время и становление. Открытие порядка в природе рождало чувство интеллектуальной уверенности. Мы искали общие, всеобъемлющие схемы, которые допускали бы описание на языке вечных законов, но обнаружили время, события, частицы, претерпевающие различные превращения. Занимаясь поиском симметрии, мы с удивлением обнаружили на всех уровнях - от элементарных частиц до биологии и экологии - процессы, сопровождающиеся нарушением симметрии. Мы описали в нашей книге столкновение между динамикой с присущей ей симметрией во времени и термодинамикой, для которой характерна односторонняя направленность времени. На наших глазах возникает новое единство: необратимость есть источник порядка на всех уровнях. Необратимость есть тот механизм, который создает порядок из хаоса.

Время и времена. На протяжении более трех столетий в физике господствовало мнение о том, что время по существу представляет собой геометрический параметр, позволяющий описывать последовательность динамических состояний.

Энтропийный барьер. Мы описали второе начало как принцип отбора: каждому начальному условию соответствует некоторая «информация». Допустимыми считаются все начальные условия, для которых эта информация конечна. Но для обращения времени необходима бесконечная информация; мы не можем создавать ситуации, которые переносили бы нас в прошлое! Чтобы предотвратить путешествия в прошлое, мы возвели энтропийный барьер. Нельзя не отметить интересную аналогию между энтропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Такой барьер необходим для придания смысла причинности. Энтропийный барьер также необходим для того, чтобы придать смысл передаче сигналов. Необратимость и передача сигналов тесно связаны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существование двух направлений времени. Именно энтропийный барьер гарантирует единственность направления времени, невозможность изменить ход времени с одного направления на противоположное.

Только объединение динамики и термодинамики с помощью введения нового принципа отбора придает второму началу фундаментальное значение эволюционной парадигмы естественных наук. Применяя естественнонаучные понятия к социологии или экономике, необходимо соблюдать осторожность.

Актеры и зрители. Мерло-Понти утверждал, что «философские» открытия естествознания, концептуальные преобразования его основ нередко происходят в результате негативных открытий, служащих толчком к пересмотру сложившихся взглядов и отправным пунктом для перехода к противоположной точке зрения. Доказательства невозможности, или несуществования (будь то в теории относительности, квантовой механике или термодинамике), показали, что природу невозможно описывать «извне», с позиций зрителя. Описание природы- живой диалог, коммуникация, и она подчинена ограничениям, свидетельствующим о том, что мы - макроскопические существа, погруженные в реальный физический мир.

Ситуацию, какой она представляется нам сегодня, можно условно изобразить в виде диаграммы (рис. 4). Мы начинаем с наблюдателя, измеряющего координаты и импульсы и исследующего, как они изменяются во времени. В ходе своих измерений он совершает открытие: узнает о существовании неустойчивых систем и других явлений, связанных с внутренней случайностью и внутренней необратимостью. Но от внутренней необратимости и энтропии мы переходим к диссипативиым структурам в сильно неравновесных системах, что позволяет нам понять ориентированную во времени деятельность наблюдателя. Не существует научной деятельности, которая не была бы ориентированной во времени. Подготовка эксперимента требует проведения различия между «до» и «после». Распознать обратимое движение мы можем только потому, что нам известно о необратимости. Из нашей диаграммы видно, что, описав полный круг, мы вернулись в исходную точку и теперь видим себя как неотъемлемую часть того мира, который мы описываем. Для того чтобы макроскопический мир был миром обитаемым, в котором живут «наблюдатели», т. е. живым миром, Вселенная должна находиться в сильно неравновесном состоянии.

Вихрь в бурлящей природе. Чарлз С. Пирс: «Вы все слышали о диссипации энергии. Обнаружено, что при любых трансформациях энергии часть ее превращается в тепло, а тепло всегда стремится выровнять температуру. Под воздействием собственных необходимых законов энергия мира иссякает, мир движется к своей смерти, когда повсюду перестанут действовать силы, а тепло и температура распределяться равномерно… Но хотя ни одна сила не может противостоять этой тенденции, случайность может и будет препятствовать ей. Сила в конечном счете диссипативна, случайность в конечном счете концентративна. Диссипация энергии по непреложным законам природы в силу тех же законов сопровождается обстоятельствами, все более и более благоприятными для случайной концентрации энергии. Неизбежно наступит такой момент, когда две тенденции уравновесят друг друга. Именно в таком состоянии, несомненно, находится ныне весь мир».

За пределами тавтологии. Мир классической науки был миром, в котором могли происходить только события, выводимые из мгновенного состояния системы. Классическая наука отрицала становление и многообразие природы. Объекты классической динамики замкнуты в себе. Они ничего не узнают извне. Каждая точка системы в любой момент времени знает все, что ей необходимо знать, а именно распределение масс в пространстве и их скорости. Каждое состояние содержит всю истину о всех других состояниях, совместимых с наложенными на систему связями; каждое может быть использовано для предсказания других состояний, каково бы ни было их относительное расположение на оси времени.

Коренное изменение по взглядах современной науки заключается в переходе к темпоральности и множественности. И на макроскопическом, и на микроскопическом уровнях естественные науки более не используют концепцию объективной реальности, из которой следовала необходимость отказа от новизны и многообразия во имя вечных и неизменных универсальных законов. Естественные науки избавились от слепой веры в рациональное как нечто замкнутое и отказались от идеала достижимости окончательного знания, казавшегося почти достигнутым. Ныне естественные науки открыты для всего неожиданного, которое больше не рассматривается как результат несовершенства знания или недостаточного контроля.

Состояние внутреннего мира. Идеалом классической науки была «прозрачная» картина физической Вселенной. В каждом случае предполагалась возможность указать причину и ее следствие. Но когда возникает необходимость в стохастическом описании, причинно-следственная часть усложняется. Мы не можем говорить более о причинности в каждом отдельном эксперименте. Имеет смысл говорить лишь о статистической причинности.

Обновление природы. Идеи, которым мы уделили в книге достаточно много внимания, - идеи о нестабильности флуктуации - начинают проникать в социальные науки. Ныне мы знаем, что человеческое общество представляет собой необычайно сложную систему, способную претерпевать огромное число бифуркаций, что подтверждается множеством культур, сложившихся на протяжении сравнительно короткого периода в истории человечества. Мы знаем, что столь сложные системы обладают высокой чувствительностью по отношению к флуктуациям. Это вселяет в нас одновременно и надежду, и тревогу: надежду на то, что даже малые флуктуации могут усиливаться и изменять всю их структуру (это означает, в частности, что индивидуальная активность вовсе не обречена на бессмысленность); тревогу - потому, что наш мир, по-видимому, навсегда лишился гарантий стабильных, непреходящих законов.

Мы живем в опасном и неопределенном мире, внушающем не чувство слепой уверенности, а лишь то же чувство умеренной надежды, которое некоторые талмудические тексты приписывают богу Книги Бытия: Двадцать шесть попыток предшествовали сотворению мира, и все они окончились неудачей. Мир человека возник из хаоса обломков, оставшихся от прежних попыток. Он слишком хрупок и рискует снова обратиться в ничто. «Будем надеяться, что на этот раз получилось»,- воскликнул бог, сотворив мир, и эта надежда сопутствовала всей последующей истории мира и человечества, подчеркивая с самого начала этой истории, что та отмечена печатью неустранимой неопределенности.

Книга Порядок из хаоса вышла на русском языке в 1986 году. Получилось так, что в те времена я ее не прочитал и наверстать упущенное удалось только сейчас. Должен сказать, что мне нравились идеи Пригожина: диссипативные системы в сильно неравновесном состоянии, самоорганизация и все такое. Я даже видел Пригожина — он делал доклад в МГУ. Правда, Пригожин решил, что он хорошо владеет русским и стал делать доклад по-русски. При этом никто не решился переводить с русского на русский.

В книге затронуто много тем. Большое внимание уделено диссипативным системам, флуктуациям, аттракторам и бифуркциям. Я остановлюсь только на одной теме: противопоставлении механики и термодинамики. Эта тема в настоящее время как-то ускользает из внимания. Сегодня можно часто услышать, что квантовая механика и общая теория относительности несовместима между собой, однако про противоречие между механикой и термодинамикой практически ничего не слышно.

Противоречие заключается в следующем. Макросистема состоит из атомов, которые подчинаются уравнениям механики, при этом уравнения механики обратимы относительно времени. На уровне макросистемы существует энтропия, которая задает стрелу времени, то есть, второй закон термодинамики запрещает обращение по времени на уровне макросистемы. Возникает вопрос, каким образом исходя из уравнений механики, обратимых по времени, можно объяснить появление энтропии, которая задает стрелу времени. Есть три возможных решения:

  • Уравнения механики абсолютно правильны, а появление стрелы времени и энтропии связано с особенностями восприятия природы человеком. Энергия объективна, а энтропия субъективна.
  • Энтропия объективна, следовательно термодинамика приводит к необходимости коррекции уравнений механики.
  • Убедить себя в том, что хотя на уровне микромира все обратимо во времени, увеличение степеней свободы с необходимостью приводит к возникновению принципиального нового свойства — энтропии — и, соотвественно, стрелы времени.

В книге Пригожина и Стенгерс отношения между механикой и термодинамикой рассмотрены в рамках истории двух дисциплин. Мне понравился этот подход, он хорошо показывает, как мнения людей менялись по ходу времени.

Из истории появления законов Ньютона мне понравился такой эпизод:

‘Нидэм рассказывает об иронии, с которой про­свещенные китайцы XVIII в. встретили сообщения иезуитов о триумфах европейской науки того времени. Идея о том, что природа подчиняется простым позна­ваемым законам, была воспринята в Китае как непре­взойденный пример антропоцентрической глупости.’

Вот, почему китайцы пропустили научно-техническую революцию. Цитата Вольтера прекрасно выражает идею истинного ньютонианца:

‘…все управляется незыблемыми законами … все заранее предустановлено … все необходимо обусловле­но… Есть люди, которые, испуганные этой истиной, до­пускают лишь половину ее, подобно должникам, вруча­ющим кредиторам половину своего долга с просьбой от­срочить выплату остального. Одни события, говорят та­кие люди, необходимы, другие - нет. Было бы странно, если бы часть того, что происходит, была бы должна происходить, а другая часть не должна была бы проис­ходить… Я непременно должен ощущать неодолимую потребность написать эти строки, вы - столь же не­одолимую потребность осудить меня за них. Мы оба одинаково глупы, оба - не более чем игрушки в руках предопределения. Ваша природа состоит в том, чтобы творить дурное, моя - в том, чтобы любить истину и опубликовать ее вопреки вам.’

Пригожину и Стенгерс не нравится такая позиция — они придерживаются второго решения, что термодинамика с необходимостью говорит о том, что законы механики должны быть скорректированы. В книге с удовольстием описывается открытие закона теплопереноса Фурье. Это был первый сильный удар по ньютонианцам, поскольку уравнение Фурье в отличие от уравнений механики необратимо по времени. Сторонники механики пытались изменить закон Фурье, но ничего не получилось, тепло осталось жить по своим законам. Далее последовало открытие второго начала термодинамики и началось обсуждение того, как разрешить возникнувшее противоречие.

В книге подробно рассматриваются работы Людвига Больмана, который хотел показать, что законы механики на уровне микромира совместимы с появлением энтропии на уровне макросистемы (третье решение). Однако критика Пуанкаре, Цермело и Лошмидта показала, что построения Больцмана непоследовательны. Больцман признал критику и поменял свою точку зрения — он стал сторонником первого решения, когда стрела времени и энтропия связываются с особенностями восприятия мира человеком.

Следует сказать, что со времени выхода книги мало что изменилось. В настоящее время можно встретить все три позиции. Первая позиция о субъективности энтропии особенно часто встречается у физиков, которые отождествляют энтропию в уравнении Больцмана с информацией в уравнении Шэннона.

Карло Ровелли в книге Порядок времени выбрал путь Больцмана. Время не принадлежит фундаментальной реальности и вселенной, а связано с особенностями восприятия. Шон Кэрролл в книга Большая картина: К происхождению жизни, смысла и самого космоса излагает третье решение. Вначале было малоэнтропийное состояние, далее получаются более вероятные состояния, соотвествующие повышению энтропии. Ли Смолин в книге Возвращение времени по сути близок ко второму решению.

Я бы сказал, что в книге слишком большое внимание уделяется классической статистической механике и слишком мало квантовой механики. В статистической механики, основанной на классической механики, с самого начала возникало много парадоксов и расхождений с экспериментальными результатами. Можно сказать, что это неявно свидетельствовало, что классическая механика неприминима к описанию микромира. С другой стороны, при переходе к квантовой механике возникает общий вопрос, каким образом из волновой функции на уровне микромира получается классическая макросистема. Может быть проблема интерпретации квантовой механики и противоречие между термодинамикой и механикой каким-то образом связаны между собой.

Отмечу, что в книге много интересных цитат. Ниже несколько особенно понравившихся мне цитат.

Описание ученого, данное Альбертом Эйнштейном в поздравительной речи на 60-летие Макса Планка (Мотивы научного исследования ):

‘Большинство из них - люди странные, замкнутые, уединенные; несмотря на эти общие черты, они в дей­ствительности сильнее разнятся друг от друга, чем изгнанные. Что привело их в храм?… одно из наиболее сильных побуждений, ведущих к искусству и науке, - это жела­ние уйти от будничной жизни с ее мучительной жестко­стью и безутешной пустотой, уйти от уз вечно меняю­щихся собственных прихотей. Эта причина толкает лю­дей с тонкими душевными струнами от личных пережи­ваний в мир объективного видения и понимания. Эту причину можно сравнить с тоской, неотразимо влекущей горожанина из шумной и мутной окружающей среды к тихим высокогорным ландшафтам, где взгляд далеко проникает сквозь неподвижный чистый воздух и на­слаждается спокойными очертаниями, которые кажут­ся предназначенными для вечности.

Но к этой негативной причине добавляется и позитивная. Человек стремится каким-то адекватным спосо­бом создать в себе простую и ясную картину мира для того, чтобы оторваться от мира ощущений, чтобы в из­вестной степени попытаться заменить этот мир создан­ной таким образом картиной.’

Стихи Джона Дони (1572-1631), в которых он оплакивал аристотелевский мир, разрушеный коперниковской революцией:

‘Новые философы все ставят под сомнение,
Стихия грозная - огонь - изъят из обращения.
Утратил разум человек - что не было, что было,
Не Солнце кружит круг Земли, Земля -вокруг светила.
Все люди честно признают: пошел весь мир наш прахом,
Когда сломали мудрецы его единым махом.
Повсюду новое ища (сомненье - свет в окошке),
Весь мир разрушили они до камешка, до крошки.’

В заключение цитата Чарльза Пирса по отношению к тепловой смерти вселенной:

‘Вы все слышали о диссипации энергии. Обнаружено, что при любых трансформациях энергии часть ее превращается в тепло, а тепло всегда стремится выровнять температуру. Под воздействием собственных необходимых законов энергия мира иссякает, мир движется к своей смерти, когда повсюду перестанут действовать силы, а тепло и температура распределяется равномерно…

Но хотя ни одна сила не может противостоять этой тенденции, случайность может и будет препятствовать ей. Сила в конечном счете диссипативна, случайность в конечном счете концентративна. Диссипация энергии по непреложным законам природы в силу тех же законов сопровождается обстоятельствами, все более и более благоприятными для случайной концентрации энергии. Неизбежно наступит такой момент, когда две тенденции уравновесят друг друга. Именно в таком состоянии, несомненно, находится ныне весь мир.’

Информация

Илья Пригожин, Изабелла Стенгерс, Порядок из хаоса. Новый диалог человека с природой , Москва, Прогресс, 1986.