Где находится самый большой телескоп в мире? Крупнейшие космические телескопы Телескопы в космосе


Космический телескоп «Хаббл»


Обычно астрономы строили свои обсерватории на вершинах гор, выше облаков и загрязненной атмосферы. Но даже тогда изображение искажалось воздушными потоками. Самое четкое изображение доступно только из внеатмосферной обсерватории - космоса.


С помощью телескопа можно увидеть то, что недоступно человеческому глазу, поскольку телескоп собирает больше электромагнитного излучения. В отличие от подзорной трубы, в которой для сбора и фокусирования света используются линзы, в больших астрономических телескопах эту функцию выполняют зеркала.


Телескопы с самыми большими зеркалами должны иметь наилучшее изображение, поскольку собирают наибольшее количество излучения.


Космический телескоп «Хаббл» — автоматическая обсерватория на орбите вокруг Земли, названная в честь Эдвина Хаббла, американского астронома.



И хотя диаметр зеркала "Хаббла" только 2,4 м - меньше самых больших телескопов на Земле, - он может видеть объекты в 100 раз менее четкие, и детали в десять раз мельче, чем лучшие наземные телескопы. И это потому, что он находится выше искажающей атмосферы.


Телескоп «Хаббл» — совместный проект NASA и Европейского космического агентства.


Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна, в первую очередь — в инфракрасном диапазоне.


Из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7—10 раз больше аналогичного телескопа, расположенного на Земле.


Марс

Космический телескоп "Хаббл" помог ученым узнать много нового об устройстве нашей галактики, потому оценить его важность для человечества очень трудно.


Достаточно взглянуть на список самых важных открытий этого оптического устройства, чтобы понять, насколько полезен он был, и каким важным инструментом в изучении космоса он еще может быть.


С помощью телескопа "Хаббл" было изучено столкновение Юпитера с кометой, было получено изображение рельефа Плутона, данные с телескопа стали основой гипотезы о массе черных дыр, находящихся в центре абсолютно каждой галактики.


Ученые получили возможность увидеть полярные сияния на некоторых планетах Солнечной системы, например, Юпитере и Сатурне, а также были сделаны многие наблюдения и открытия.


Юпитер

Космический телескоп "Хаббл" "заглянул" в другую солнечную систему, отдаленную от нашей на 25 световых лет, и впервые получил изображение нескольких ее планет.


Телескоп "Хаббл" получил изображение новых планет

На одной из фотографий, полученных в оптическом, то есть в видимом свете, "Хаббл" запечатлел планету Фомалхот, вращающуюся по орбите вокруг яркой звезды Фомалхот, расположенной от нас на расстоянии 25 световых лет (около 250 триллионов километров) в созвездии Южная Рыба.


"Данные с "Хаббла" невероятно важны. Излучение света с планеты Фомалхот в миллиард раз слабее света, исходящего от звезды", - прокомментировал изображение новой планеты астроном из Калифорнийского университета Пол Калас. Он и другие ученые начали исследование звезды Фомалхот еще в 2001 году, когда о существовании планеты рядом со звездой еще не было известно.


В 2004 году "Хаббл" направил на Землю первые снимки районов вокруг звезды.


На новых снимках с космического телескопа "Хаббл", астроном получил "документальное" подтверждение своим предположениям о существовании планеты Фомалхот.


С помощью фотографий орбитального телескопа ученые "увидели" также еще три планеты в созвездии Пегаса.
Всего астрономами за пределами нашей Солнечной системы обнаружено около 300 планет.


Но все эти открытия делались на основе косвенных признаков, главным образом, через наблюдение за воздействием их гравитациоционных полей на звезды, вокруг которых они обращаются.


"Каждая планета вне нашей солнечной системы была только на схеме, - отметил Брюс Макинтош, астрофизик из Национальной лаборатории в Калифорнии. - Мы безуспешно пытались получить изображения планет в течение восьми лет, а теперь у нас уже есть фотографии нескольких планет сразу".


За 15 лет работы на околоземной орбите «Хаббл» получил 700 тысяч изображений 22 тысяч небесных объектов — звёзд, туманностей, галактик, планет.


Тем не менее, цена, которую приходится платить за достижения «Хаббла» весьма высока: стоимость содержания космического телескопа выше в 100 и более раз, чем наземного рефлектора, с 4-метровым зеркалом.

Уже в первые недели после начала работы телескопа в 1990 году, полученные изображения продемонстрировали серьёзную проблему в оптической системе телескопа. Хотя качество изображений было лучше, чем у наземных телескопов, «Хаббл» не мог достичь заданной резкости, и разрешение снимков было значительно хуже ожидаемого.
Анализ изображений показал, что источником проблемы является неверная форма главного зеркала. Оно было изготовлено слишком плоским по краям. Отклонение от заданной формы поверхности составило лишь 2 микрометрa, но результат оказался катастрофическим — оптический дефект, при котором свет, отражённый от краёв зеркала, фокусируется в точке, отличной от той, в которой фокусируется свет, отражённый от центра зеркала.
Потеря значительной части светового потока значительно уменьшили пригодность телескопа для наблюдений тусклых объектов и получения изображений с высокой контрастностью. Это означало, что практически все космологические программы стали просто невыполнимыми, поскольку требовали наблюдений особо тусклых объектов.


В течение первых трёх лет работы, до установки корректирующих устройств телескоп выполнил большое количество наблюдений. Дефект не оказывал большого влияния на спектроскопические замеры. Несмотря на отменённые из-за дефекта эксперименты, было достигнуто множество важных научных результатов.


Техническое обслуживание телескопа.


Техническое обслуживание телескопа «Хаббла» производится космонавтами во время выходов в открытый космос с космических кораблей многоразового использования типа «Спейс Шаттл».


Всего были осуществлены четыре экспедиции по обслуживанию телескопа «Хаббл».

В связи с выявившимся дефектом зеркала, первая экспедиция по обслуживанию телескопа должна была установить на телескопе корректирующую оптику. Экспедиция (2-13 декабря 1993 г.) была одной из сложнейших, были осуществлены пять длительных выходов в открытый космос. Кроме этого были заменены солнечные батареи, обновлен бортовой вычислительный комплекс, была произведена коррекция орбиты.

Второе техобслуживание было произведено 11-21 февраля 1997 года. Было заменено исследовательское оборудование, заменён бортовой регистратор, произведён ремонт теплоизоляции и выполнена коррекция орбиты.


Экспедиция 3А состоялась 19-27 декабря 1999 года. Было принято решение о досрочном проведении части работ. Это было вызвано тем, что три из шести гироскопов системы наведения вышли из строя. Экспедиция заменила все шесть гироскопов, датчик точного наведения и бортовой компьютер.


Экспедиция 3В (четвёртая миссия) выполнена 1-12 марта 2002 года. В ходе экспедиции камера съёмки тусклых объектов была заменена усовершенствованной обзорной камерой. Были во второй раз заменены солнечные батареи. Новые панели были на треть меньше по площади, что значительно уменьшило потери на трение в атмосфере, но при этом вырабатывали на 30% больше энергии, благодаря этому стала возможна одновременная работа со всеми приборами, установленными на борту обсерватории.


Произведённые работы существенно расширили возможности телескопа, позволили получить изображения глубокого космоса.


Предполагается, что телескоп Хаббл продолжит свою работу на орбите, по крайней мере, до 2013 года.

Наиболее значимые наблюдения

* «Хаббл» предоставил высококачественные изображения столкновения кометы Шумейкеров-Леви 9 с Юпитером в 1994 году.


* Впервые получены карты поверхности Плутона и Эриды.


* Впервые наблюдались ультрафиолетовые полярные сияния на Сатурне, Юпитере и Ганимеде.


* Получены дополнительные данные о планетах вне солнечной системы, в том числе, спектрометрические.


* Найдено большое количество протопланетных дисков вокруг звёзд в Туманности Ориона. Доказано, что процесс формирования планет происходит у большинства звёзд нашей Галактики.


* Частично подтверждена теория о сверхмассивных чёрных дырах в центрах галактик, на основе наблюдений выдвинута гипотеза, связывающая массу чёрных дыр и свойства галактики.


* уточнён возраст Вселенной — 13,7 млрд. лет.

Что такое «Хаббл»?

Американский ученый Эдвин Пауэлл Хаббл стал широко известным благодаря открытию эффекта расширения Вселенной. Его до сих пор часто упоминают в своих статьях великие ученые. Хаббл — человек, в честь которого был назван радиотелескоп, и благодаря которому произошла полная замена всех ассоциаций и стереотипов.

Телескоп «Хаббл» — один из самых известных среди объектов, которые непосредственно связаны с космосом. Его можно с уверенностью считать настоящей автоматической орбитальной обсерваторией. Этот космический гигант требовал немалого финансового вложения (ведь затраты на неземной телескоп превышали стоимость наземного в сотни раз), а также ресурсов и времени. Исходя из этого два крупнейших агентства мира, такие как НАСА и Европейское космическое агентство (ЕКА), решили соединить свои возможности и сделать совместный проект.

В каком году он был запущен, уже давно не является секретной информацией. Запуск на земную орбиту состоялся 24 апреля 1990 года на борту шаттла "Дискавери«STS-31. Возвращаясь к истории, стоит упомянуть то, что год запуска изначально планировался другой. Предполагаемой датой должен был стать октябрь 1986 года, но в январе того же года, произошла катастрофа «Челленджера» и все были вынуждены отложить запланированный запуск.С каждым месяцем простоя стоимость программы увеличивалась на 6 миллионов долларов. Ведь не так просто сохранить в идеальном состоянии объект, который нужно будет отправить в космос. «Хаббл» был помещен в особое помещение, в котором была искусственно создана очищенная атмосфера, а также частично функционировали бортовые системы. За время хранения, также некоторые приборы были заменены на более современные.

Когда запустили"Хаббл" все ожидали неимоверного триумфа, но не сразу все было так, как хотелось. Ученые столкнулись с проблемами уже с первых снимков. Было понятно, что на зеркале телескопа имеется дефект, и качество снимков отличалось от ожидаемого. Также было не совсем понятно, сколько лет пройдет с момента обнаружения проблемы до ее решения. Ведь было очевидным, что заменить главное зеркало телескопа непосредственно на орбите невозможно, а вернуть его на Землю чрезвычайно дорого, поэтому было принято решение о том, что нужно установить на него дополнительную аппаратуру и за счет нее скомпенсировать дефект зеркала.Так, уже в декабре 1993 года был отправлен шаттл «Индевор» с нужными конструкциями. Космонавты пять раз выходили в открытый космос и успешно смогли установить нужные детали на телескоп «Хаббл».

Что новое увидел в космосе телескоп? И какие открытия смогло сделать человечество на основе снимков? Это одни из самых распространенных вопросов, задаваемых когда-либо учеными. Конечно, самые большие звезды, снятые телескопом не остались без внимания. А именно, благодаря уникальности телескопа, астрономы выявили одновременно девять огромных звезд (в звездном скоплении R136), масса которых больше чем в 100 раз превосходит массу Солнца. Были обнаружены и звезды, масса которых превышает массу Солнца в 50 раз.

Также не осталось без внимания фото, где запечатлены двести безумно горячих звезд, которые в совокупности дают нам туманность NGC 604. Именно «Хаббл» смог заснять флуоресценцию туманности, которая была вызвана ионизированным водородом.

Говоря о теории большого взрыва, которая сегодня является одной из самых широко обсуждаемых и самой достоверной в истории происхождения Вселенной, стоит вспомнить о реликтовом излучении. Реликтовое излучение является одним из ее основоположных доказательств. А вот еще одним стало космологическое красное смещение.В совокупности получилось проявление эффекта Доплера. По нему тело видит предметы, которые к нему приближаются в синем цвете, а если они отдаляются, то становятся более красными. Так, наблюдая за космическими объектами с телескопа «Хаббл», смещение было красным и на этом основании было сделано заключение о расширении Вселенной.

Рассматривая снимки с телескопа, одним из первых вы увидите Дальнее поле. На фото вы уже не разглядите звезды по отдельности — это будут целые галактики.И сразу же возникает вопрос: на какое расстояние видит телескоп и какой его крайний рубеж? Для того, чтобы ответить, как телескоп видит так далеко, нужно подробно рассмотреть конструкцию «Хаббла».

Технические характеристики телескопа

  1. Габаритные размеры всего спутника: 13,3 м — длина, масса около 11 тонн, но с учетом всех установленных приборов, его масса достигает 12,5 тонн и диаметр — 4,3 м.
  2. Форма точности ориентации может достигать 0,007 угловых секунд.
  3. Две двусторонние солнечные батареи мощностью 5 кВт, но есть еще 6 батарей, у которых емкость 60 ампер/часов.
  4. Все двигатели работают на гидразине.
  5. Антенна, которая способна принимать все данные со скоростью 1 кБ/с, а отдавать — 256/512 кБ/с.
  6. Основное зеркало, диаметр которого — 2,4 м, а также вспомогательное — 0,3 м.Материал главного зеркала — плавленое кварцевое стекло, которое не поддается тепловым деформациям.
  7. Какое увеличение, такое и фокусное расстояние, а именно 56,6 м.
  8. Кратность обращения —раз в полтора часа.
  9. Радиус сферы «Хаббла» —отношение скорости света к постоянной Хаббла.
  10. Характеристики излучения — 1050-8000 ангстрем.
  11. А вот на какой высоте над поверхностью Земли находится спутник, известно давно. Это 560 км.

Как устроен принцип работы телескопа «Хаббл»?

Принцип работы телескопа является рефлектором системы Ричи-Кретьена. Строение системы — это главное зеркало, которое вогнуто гиперболически, а вот его вспомогательное зеркало — выпукло гиперболически. Устройство, установленное в самом центре гиперболического зеркала называется окуляр. Поле зрения — около 4°.

Так кто же все-таки принимал участие в создании этого потрясающего телескопа, который несмотря на свой почтенный возраст, продолжает радовать нас своими открытиями?

История создания уходит в далекие семидесятые года 20 века. Над самыми важными частями телескопа, а именно главным зеркалом работало несколько компаний. Ведь требования выдвигались достаточно жесткие, а результат планировался идеальным. Так, компания PerkinElmer хотела использовать свои станки с новыми технологиями для достижения нужной формы. А вот компания Kodak подписала контракт, в котором предполагалось использование более традиционных методов, но уже для запасных деталей. Работы по изготовлению начались еще в 1979 году, а полировка нужных деталей продолжалась до середины 1981 года. Даты были очень сдвинуты, и возник вопрос компетентности компании PerkinElmer, по итогам было перенесено запуск телескопана октябрь 1984 года. Вскоре некомпетентность проявлялась все больше, и еще несколько раз переносилась дата запуска.История подтверждает, что одной из предполагаемых дат был сентябрь 1986 года, в то время как общий бюджет всего проекта вырос до 1,175 млрд. долл.

И напоследок, информация о самых интересных и значимых наблюдениях телескопа «Хаббл»:

  1. Были обнаружены планеты, которые находятся вне Солнечной системы.
  2. Найдено огромное количество протопланетных дисков, которые располагаются вокруг звезд Туманности Ориона.
  3. Произошло открытие в изучении поверхности Плутона и Эриды. Были получены первые карты.
  4. Немаловажным является частичное подтверждение теории об очень массивных черных дырах, которые располагаются в центрах галактик.
  5. Было показано, что достаточно схожи по форме Млечный Путь и Туманность Андромеды имеют значительные отличия в их истории возникновения.
  6. Был однозначно установлен точный возраст нашей Вселенной. Он составляет 13,7 млрд. лет.
  7. Гипотезы относительно изотропности — также верны.
  8. В 1998 году были объединены исследования и наблюдения наземных телескопов и «Хаббла», и установлено, что в темной энергии ¾ содержания от полной плотности всей энергии Вселенной.

Изучение космических пространств продолжается...

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1607 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано в силу того, что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причём как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи , датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилео Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея, показанного на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

«Телескоп Галилея», Музей Галилея (Флоренция)

В 20-м веке также наблюдалось развитие телескопов, которые работали в широком диапазоне длин волн от радио до гамма-лучей. Первый специально созданный радиотелескоп вступил в строй в 1937 году. С тех пор было разработано огромное множество сложных астрономических приборов.

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом , а сам телескоп превращается в астрограф . Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало, а для компенсации его аберраций служат линзы.

Это может быть одиночная линза (система Гельмута), система линз (Волосова-Гальперна-Печатниковой, Бэйкер-Нана), ахроматический мениск Максутова (одноимённые системы), или планоидная асферическая пластина (системы Шмидта, Райта). Иногда главному зеркалу придают форму эллипсоида (некоторые менисковые телескопы), сплюснутого сфероида (камера Райта), или просто немного фигуризованную неправильную поверхность. Этим удаётся остаточные аберрации системы.

Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы , отличающиеся конструктивно от традиционных звёздных телескопов.

Радиотелескопы

Радиотелескопы Very Large Array в штате Нью-Мексико, США

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприёмник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приёмников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включённый в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды , инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope ), установленный на южном географическом полюсе , работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолётах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа

Телескоп Хаббл носит название в честь Эдвина Хаббла и является работающей в абсолютно автоматическом режиме обсерваторией, местом нахождения которой является орбита планеты Земля.

Шаттл Дискавери 24 апреля 1990 года вывел космический телескоп Хаббл на заданную орбиту. Нахождение на орбите дает отличную возможность фиксировать электромагнитное излучение в инфракрасном диапазоне Земли. Вследствие отсутствия атмосферы, способности Хаббла увеличиваются в разы по сравнению с такими же аппаратами, находящимися на Земле.

Трехмерная модель телескопа

Технические данные

Космический телескоп Хаббл, представляет собой сооружение цилиндрической формы протяжённостью 13,3 м, окружность которого составляет 4,3 м. Масса телескопа до оснащения спец. оборудованием составляла 11 000 кг, но после установки всех необходимых для исследования приборов общая его масса достигла 12 500 кг. Питание всего установленного в обсерватории оборудования осуществляется за счет двух солнечных батарей, установленных прямо в корпус данного агрегата. Принцип работы представляет собой рефлектор системы Ричи-Кретьена с диаметром главного зеркала 2,4 м, это дает возможность получать изображения с оптическим разрешением порядка 0,1 угловой секунды.

Установленные приборы

В данном устройстве имеется 5 отсеков предназначенных для приборов. В одном из пяти отсеков долгое время находилась с 1993 по 2009 годы корректирующая оптическая система (COSTAR), она предназначалось для того, чтобы компенсировать неточность главного зеркала. Благодаря тому, что все приборы, которые были установленные, имеют встроенные системы коррекции дефекта, COSTAR демонтировали, а отсек стали использовать для установки ультрафиолетового спектрографа.

На момент отправки аппарата в космос, на нем были установлены следующие приборы:

  1. Планетарная и широкоугольная камеры;
  2. Спектрограф высокого разрешения;
  3. Камера съемки и спектрограф тусклых объектов;
  4. Датчик точного наведения;
  5. Высокоскоростной фотометр.

Достижения телескопа

На фотографии телескопа — звезда RS Кормы

За все время своей работы Хаббл передал на Землю около двадцати терабайтов информации. В результате чего, были опубликованы около четырех тысяч статей, возможность наблюдать небесные тела получили более трехсот девяноста тысяч астрономов. Только за пятнадцать лет работы телескопу удалось получить семьсот тысяч изображений планет, всевозможных галактик, туманностей и звезд. Данные, которые ежедневно проходят через телескоп в процессе работы составляют примерно 15 Гб.

Снимок газопылевого облака IRAS 20324+4057

Несмотря на все достижения этого оборудования обслуживание, содержание и ремонт телескопа в 100 раз превышает стоимость содержания его «наземного коллеги». Правительства США задумывается об отказе от использования данного аппарата, но пока он на орбите и исправно работает. Есть предположение, что данная обсерватория будет располагаться на орбите до 2014 года, затем ее заменит космический собрат «Джеймс Вебб».

В июле 1923 г. в издательстве Ольденбурга в Мюнхене вышла книга «Ракета в космическое пространство». Ее автором был Герман Оберт (Hermann Julius Oberth), ставший известным десятки лет спустя и даже произведенный в «отцы-основатели» ракетной техники. Основные положения его работы можно кратко сформулировать так:

1. При современном состоянии науки и техники возможно создание аппарата, способного выйти за пределы земной атмосферы.
2. В дальнейшем подобные аппараты смогут развивать такую скорость, что преодолеют земное притяжение и уйдут в межпланетное пространство.
3. Имеется возможность создать такие устройства, которые смогут выполнить подобные задачи, имея на своем борту человека, причем без серьезного ущерба его здоровью.
4. При определенных условиях создание таких устройств может стать вполне целесообразным. Такие условия могут возникнуть в ближайшие десятилетия.

В заключительных, констатирующих фразах последней части книги идет обсуждение далеких перспектив - возможности увидеть обратную сторону Луны, запуска искусственных спутников Земли, широкого применения их для различных целей, создания орбитальных станций, осуществления с их помощью определенных видов деятельности, в том числе научных исследований и астрономических наблюдений. Это позволяет считать июль 1923 года «точкой отсчета» космической астрономии.

В ознаменование 90-летия этого события редакция нашего журнала подготовила публикацию цикла статей о реализуемых в настоящее время (или недавно завершенных) проектах исследования Вселенной, базирующихся на астрономических инструментах за пределами земной атмосферы. Полная летопись этой интереснейшей и активно развивающейся отрасли астрономии заслуживает отдельной книги, которая, несомненно, уже в скором времени будет написана.

Космические телескопы видимого диапазона


В ходе эволюции человеческий глаз приобрел наибольшую чувствительность к тому участку электромагнитного спектра, который лучше всего пропускается земной атмосферой. Поэтому и астрономические наблюдения с древнейших времен ведутся главным образом в видимом диапазоне. Однако уже в конце XIX века астрономам стало понятно, что «воздушный океан» с его неоднородностями и непредсказуемыми течениями создает слишком много препятствий для дальнейшего развития наблюдательной техники. Если при измерениях положения звезд на небе все эти погрешности в основном устранялись статистическими методами, то попытки получить изображения небесных тел с высоким разрешением оказывались безуспешными даже в местах с наилучшим астроклиматом. При наблюдениях с поверхности Земли самые совершенные телескопы могли обеспечить стандартное разрешение порядка половины угловой секунды, в идеальных случаях - до четверти секунды. Теоретические расчеты показывали, что вынос телескопа за пределы атмосферы позволил бы на порядок улучшить его возможности (в ультрафиолетовой части спектра можно было добиться почти в 20 раз более высокого разрешения).

ХАРАКТЕРИСТИКИ КОСМИЧЕСКОГО АППАРАТА:

> Длина - 13,3 м, диаметр - 4,3 м, масса - 11 тонн (с установленными приборами - около 12,5 т); две солнечных батареи имеют размеры 2,6x7,1 м.
> Телескоп представляет собой рефлектор системы Ричи-Кретьена с диаметром главного зеркала 2,4 м, позволяющий получать изображение с оптическим разрешением порядка 0,1 угловой секунды. ПАРАМЕТРЫ ОРБИТЫ:
> Наклонение: 28,47°
> Апогей: 566 км
> Перигей: 561 км
> Период обращения: 96,2 минуты
Телескоп имеет модульную структуру и содержит пять отсеков для научных приборов. В процессе эксплуатации проведено четыре сеанса обслуживания, замены и модернизации старого оборудования.

ПРИБОРЫ, РАБОТАВШИЕ ИЛИ РАБОТАЮЩИЕ НА ОБСЕРВАТОРИИ HUBBLE:

> Широкоугольная и планетарная камера {Wide Field and Planetary Camera). Оснащена набором из 48 светофильтров для выделения участков спектра, представляющих особый интерес для астрофизических наблюдений. В составе камер - 8 ПЗС-матриц (2 секции по 4 матрицы каждая). Широкоугольная камера имеет больший угол обзора, планетарная камера обладает большим эквивалентным фокусным расстоянием, позволяя получать большие увеличения. Именно этой камерой сделаны все потрясающие «пейзажные» снимки.
> Спектрограф высокого разрешения Годдарда (Goddard High Resolution Spectrograph - GHRS) предназначен для работы в ультрафиолетовом диапазоне. Его спектральное разрешение варьируется от 2000 до 100 тыс.
> Камера съемки тусклых объектов (Faint Object Camera - FOC) ведет фотографирование в ультрафиолетовом диапазоне с угловым разрешением до 0,05 секунды.
> Спектрограф тусклых объектов предназначен для исследования слабосветящихся объектов в ультрафиолетовом диапазоне.
> Высокоскоростной фотометр (High Speed Photometer - HSP) осуществляет наблюдения за переменными звездами и другими объектами с изменяющейся яркостью. Делает до 10 тыс. измерений в секунду с погрешностью около 2%.
> Датчики точного наведения (Fine Guidance Sensors -FGS) могут использоваться в научных целях, обеспечивая астрометрию с миллисекундной точностью, что позволяет определять параллакс и собственное движение объектов с погрешностью до 0,2 угловой миллисекунды и наблюдать орбиты двойных звезд с угловым диаметром до 12 миллисекунд.
> Широкоугольная камера 3 (Wide Field Camera 3 - WFC 3) - камера для наблюдений в широком спектральном диапазоне (видимом, ближнем инфракрасном, ближнем и среднем ультрафиолетовом участках электромагнитного спектра).
> Корректирующая оптическая система (COSTAR) была установлена в ходе первой сервисной миссии для компенсации неточности изготовления главного зеркала

КОСМИЧЕСКИЕ ТЕЛЕСКОПЫ

Начало практического воплощения идей внеатмосферной астрономии связано с именем американского астрофизика Лаймана Спитцера (Lyman Spitzer). В 1946 он подготовил для проекта RAND (Research and Development - «Исследования и разработка») компании Douglas Aircraft обширный доклад «Астрономические преимущества внеземной обсерватории», в котором не только доказал, что крупные орбитальные телескопы неизмеримо расширят возможности исследования небесных объектов, но и наметил развернутую программу таких исследований. Первая орбитальная обсерватория (для фотографирования Солнца) была запущена Великобританией в 1962 г. в рамках программы Ariel.
В 1968 г. Национальная аэрокосмическая администрация США (NASA) утвердила план строительства телескопа-рефлектора с диаметром зеркала 3 м. Проект получил условное название LST (Large Space Telescope - «Большой космический телескоп»). Запуск был запланирован на 1972 г. Но борьба продолжалась теперь уже в финансовой «плоскости»: средства то выделялись, то очередное правительство и Конгресс сокращали финансирование, вплоть до полного сворачивания программы. Диаметр объектива телескопа уменьшили до 2,4 м, зато появился новый участник проекта - Европейское Космическое агентство (ESA), взявшееся «в обмен» на 15% наблюдательного времени частично финансировать программу и участвовать в изготовлении отдельных приборов.
В 1979 г. был опубликован доклад NASA «Стратегия космической астрономии и астрофизики на 1980-е годы», в котором предполагалось осуществление программы «Большие обсерватории». Уже профинансированный Конгрессом в 1978 г. LST стал одним из четырех элементов проекта - ему была отведена роль «наблюдателя» в видимом, а также ближнем инфракрасном и ультрафиолетовом диапазонах. Комптоновская обсерватория (CGRO) отвечала за исследования в жестком рентгеновском и гамма-диапазоне,2 телескоп Chandra (СХО) должен был исследовать мягкое рентгеновское излучение, a Spitzer (SST) - средний и дальний инфракрасный участок спектра.

Hubble Space Telescope


Работы по созданию LST двигались наиболее быстро. Первоначально его отправка на орбиту планировалась на 1983 г. Правда, тогда его запустить не удалось, но было решено присвоить орбитальной обсерватории имя Эдвина Хаббла (Edwin Hubble). 24 апреля 1990 г. шаттл Discovery вывел телескоп на расчетную орбиту. От начала проектирования до запуска на этот проект было затрачено 2,5 млрд. долларов - при начальном бюджете $400 млн.
В настоящее время Hubble является старейшим и наиболее «плодовитым» астрономическим инструментом, работающим за пределами атмосферы. Для поддержания его в рабочем состоянии NASA организовала 4 ремонтных миссии, последнюю из которых осуществил экипаж шаттла Atlantis в мае 2009 г. Общие расходы на эксплуатацию орбитальной обсерватории с американской стороны составили более 6 млрд. долларов; еще 593 млн. евро выделило ESA.
Управление полетом, прием данных и их первичная обработка осуществляются Центром космических полетов Годдарда (Goddard Space Flight Center). В течение суток данные передаются в Научный институт космического телескопа (Space Telescope Science Institute, STScI), отвечающий за их основную обработку и публикацию для использования научным сообществом. Телескоп Hubble работает как международная исследовательская лаборатория. Рассматриваются проекты, поступающие со всего мира, хотя конкуренция за наблюдательное время весьма жесткая, поэтому реализуется в среднем один из 10 проектов.
Научные достижения телескопа Hubble. Несмотря на то, что после начала работы обнаружились отклонения формы главного зеркала телескопа от расчетной (не позволившие задействовать его «в полную силу»), Hubble практически сразу начал приносить ценные научные результаты. При создании этого инструмента было заявлено, что его основная задача - «устремить взор вглубь Вселенной». Ему предстояло, прежде всего, отработать «аванс» - продолжить исследования, начатые его «крестным отцом» Эдвином Хабблом:уточнить постоянную и проверить закон его имени, подтвердить интерпретацию красного смещения как допплеровского эффекта и реальность расширения Вселенной. С этими задачами ставший уже легендарным космический телескоп успешно справился.
В доказательствах того, что наша Галактика - не единственная подобная система во Вселенной, астрономы уже давно не нуждаются. Также не вызывает сомнений тот факт, что все эти «звездные острова» (точнее - их гравитационно связанные группы), постоянно удаляются друг от друга. Скорость взаимного удаления прямо пропорциональна расстоянию между объектами, а коэффициент пропорциональности носит название «константы Хаббла» (Н0). Ее первые оценки, сделанные самим Хабблом, давали значение порядка пятисот километров в секунду на мегапарсек. На протяжении последующих 90 лет они неоднократно пересматривались, будучи предметом ожесточенных дискуссий: ведь на самом деле эта константа, приведенная к системным единицам, представляет собой величину, обратную - ни много, ни мало - возрасту Вселенной. Последнее, наиболее точное ее значение равно 70,4 (км/с)/Мпк (Н0=2,28х10 -18 с -1), и немалую лепту в его установление внесли измерения, проведенные телескопом Hubble. Именно это и принято считать его главным «научным подвигом».
Установив факт расширения Вселенной, Эдвин Хаббл этим и ограничился, но его «космический тезка» пошел дальше и сумел не только подтвердить это на новом техническом уровне, но и доказать неравномерность этого расширения (точнее - его ускорение). Такое открытие требовало проведения измерений спектральных характеристик объектов на предельно больших расстояниях - а в этом был «силен» только Hubble. Удалось сделать несколько тысяч оценок блеска сверхновых типа 1а, особенность которых заключается в том, что в максимуме вспышки они выделяют примерно одинаковое количество энергии, а значит, наблюдаемая яркость вспышки зависит только от расстояния до ее источника.6 В выполнении этой программы исследований участвовало более десятка наземных и космических телескопов. Плоды такой кооперации были весьма успешными, а степень важности полученных результатов для науки оказалось достаточной для того, чтобы присудить коллективу авторов открытия Нобелевскую премию в области физики.
Для проверки «дальнобойности» телескопа было проведено несколько так называемых глубоких обзоров Вселенной. Для этого выбиралась площадка на небе, на которой отсутствуют близкие галактики и звезды нашей Галактики, и проводилось фотографирование с максимально длительными экспозициями. При этом удавалось запечатлеть очень удаленные объекты различных типов, размеров, светимостей и возрастов. Среди них были и молодые звездные скопления, которые только готовятся стать «привычными» галактиками, и уже вполне сформировавшиеся звездные системы. Глубокие обзоры Вселенной - Hubble Deep Field (HDF), в шутку названные астрономами «Глубокими Проколами Вселенной» -это взгляд сквозь миллиарды лет, в древнейшую историю нашего мира.

В ходе одного из «проколов» Hubble сосредоточил свое внимание на площадке размером в одну тридцатимиллионную часть небесной сферы и обнаружил на ней более 3000 тусклых - на пределе видимости - галактик. Детальный снимок другой подобной области неба продемонстрировал такую же картину, из чего был сделан вывод об изотропности Вселенной - ее однородности во всех направлениях на больших масштабах. Поскольку такие наблюдения требуют весьма длительных экспозиций (во время одного из сеансов «выдержка» достигла 11,3 суток), они были единичными. Астрономам удалось увидеть протогалактики - первые сгустки материи, сформировавшиеся менее чем через миллиард лет после Большого взрыва и позже объединившиеся в звездные системы современного вида.
Особого внимания заслуживает уникальный эксперимент «Глубокий обзор Большими обсерваториями» (Great Observatories Origins Deep Survey - GOODS), осуществленный скоординированными усилиями космических телескопов Hubble, Spitzer, Chandra, орбитального рентгеновского телескопа XMM-Newton и ряда крупнейших наземных инструментов. Объектом наблюдений стали две площадки из программы Hubble Deep Field. На красном смещении Z=6 достигнута пространственная разрешающая способность порядка килопарсека, для 60 тыс. галактик поля определены фотометрические красные смещения. Участники этого проекта утверждают, что они заглянули на 13 млрд. лет назад, в эпоху реионизации, когда излучение первых звезд вызвало распад части атомов межзвездного водорода на электроны и протоны.
Рекордным пока что является «погружение» в глубины Вселенной, анонсированное в сентябре 2012 г. (Hubble extreme Deep Field). На протяжении 10 лет участок неба в созвездии Печи экспонировался с суммарной выдержкой 2 млн. секунд. Астрономы утверждают, что в данном случае они увидели Вселенную в совершенно «детском» возрасте - не более полумиллиарда лет. Самые тусклые галактики на снимке (всего их там насчитывается порядка 5500) имеют яркость в 10 млрд. раз ниже предела чувствительности человеческого зрения.


АКЦ ФИАН Астрокосмический центр Физического института Академии Наук, Россия
ESA Европейское Космическое агентство
NASA Национальная аэрокосмическая администрация, США
CNES Национальный центр космических исследований, Франция
CSA Канадское космическое агентство
ASI Итальянское космическое агентство
JAXA Японское агентство аэрокосмических исследований
SSC Шведская космическая корпорация
КОСМИЧЕСКИЕ ТЕЛЕСКОПЫ
Под названиями телескопов приведены параметры орбиты, оператор и дата запуска


Долгое время астрофизики-теоретики пытались убедить научную общественность в том, что сверхмассивные черные дыры обязательно должны присутствовать в центральных областях галактик, но наблюдательных доказательств этого не имели. Стоило «вмешаться в спор» телескопу Hubble - и все встало на свои места: сейчас экзотикой является скорее галактика без центральной черной дыры. Теперь аргументы ученых выглядят весьма убедительно: систематические наблюдения большого количества звездных систем выявили корреляцию между размерами балджа (центрального сгущения галактики) и массой сверхплотных объектов в их центрах, определяемой по лучевым скоростям звезд.
Не все результаты космического телескопа требовали сложных долговременных наблюдений. Среди его снимков много таких, которые сами по себе уже представляют решенные астрофизические задачи. Рождение звезд в «Трехдольной туманности» М20 он продемонстрировал исключительно наглядно. Планетарная туманность NGC 7027 - финальная стадия эволюции звезды, похожей на наше Солнце. Классическими стали «Столпы творения» в туманности «Орел»...


В момент подготовки «полетного задания» обсерватории некоторые проблемы не просто не были приоритетными - астрономы только догадывались о том, что они возникнут. К таким задачам, прежде всего, следует отнести поиск планет иных звезд (экзопланет). Благодаря высокой чувствительности своих детекторов и отсутствию влияния земной атмосферы Hubble способен зарегистрировать ничтожное изменение блеска наблюдаемой звезды, вызванное прохождением перед ее диском спутника планетных размеров. В технике наблюдений такой способ поиска экзопланет называется «методом транзитов». Он применим только для объектов, плоскость орбиты которых слабо наклонена к направлению на Землю, зато позволяет сразу определить много их характеристик - в частности, размер, массу, а иногда и состав атмосферы (путем спектрального анализа излучения звезды во время «затмения»). Прорывным открытием следует признать первое обнаружение органической молекулы - метана СН4 -в газовой оболочке планеты-гиганта HD 189733b с использованием одного из важнейших приборов телескопа Hubble - спектрометра NICMOS (Near Infrared Camera and Multi-Object Spectrometer), установленного на борту обсерватории через семь лет после запуска в ходе второй ремонтной миссии.

Кроме планетоподобных тел, космический телескоп подтвердил существование многочисленных протопланетных дисков в областях звездообразования (туманность «Орел», Большая Туманность Ориона) и возле некоторых звезд. Эти открытия инициировали появление весьма перспективного научного направления - поисков и исследования экзокомет, поясов экзоастероидов. Теперь уже очевидно, что процесс формирования планет в нашей Галактике происходит постоянно. Немало доказательств Hubble собрал для общепринятого с недавнего времени вывода о том, что экзопланеты должны быть во Вселенной вполне заурядным и распространенным явлением.


Космический телескоп Hubble предоставил нам возможность полюбоваться потрясающим изображением яркого кольца звездообразования, окружающего сердце спиральной галактики с перемычкой, обозначенной индексом NGC 1097. Эта галактика удалена от нас примерно на 45 млн. световых лет и видна в южном созвездии Печи. Она относится к классу сейфертовских галактик, этот факт, что ее главная плоскость почти перпендикулярна к направлению на Землю, делает ее особенно «лакомым» объектом для астрономов. Скрытая в самом центре галактики сверхмассивная черная дыра (ЧД) с массой окло 100 млн. солнечных масс постепенно поглощает вещество из окружающего пространства. Это вещество, падая на ЧД, «закручивается» в аккреционный диск, разогревается и начинает излучать в широком диапазоне электромагнитных волн. Контуры диска четко очерчены сравнительно недавно «родившимися» звездами, материалом для которых является падающее на ЧД вещество центрального бара (перемычки) галактики. Эти области звездообразования ярко светятся благодаря излучению облаков ионизованного водорода. Диаметр кольца составляет около 5 тыс. световых лет, а спиральные рукава NGC 1097 простираются на десятки тысяч световых лет за ее пределы.
Однако в поведении этой галактики наблюдаются отдельные моменты, которые резко выделяют ее из сообщества подобных объектов. У нее имеется два небольших компаньона - эллиптическая галактика NGC 1097А, находящаяся на расстоянии 42 тыс. световых лет от центра «основной» звездной системы, и карликовая галактика NGC 1097В. Их наличие, безусловно, влияет на эволюцию необычного космического «трио». Существуют серьезные основания утверждать, что в недалеком (по космическим масштабам) прошлом взаимодействие между его членами было более тесным и активным.
NGC 1097 является также уникальным регионом для «охотников за сверхновыми»: в ней уже отмечено три случая вспышек звезд большой массы в период между 1992 и 2003 гг. В этом отношении она заслуживает особого внимания и проведения регулярного мониторинга.
КОСМИЧЕСКИЕ ТЕЛЕСКОПЫ

Основной «сферой деятельности» мощного космического телескопа, конечно же, мыслились исследования дальнего Космоса. Поэтому при изучении нашей Солнечной системы его потенциал был задействован довольно ограниченно. Но и перечень его достижений в ее пределах также впечатляет. Прежде всего, следует отметить небывалое в истории астрономии сопровождение падения на Юпитер обломков кометы Шумейкер-Леви 9 (D/1993 F2 Shoemaker-Levy 9) в июле 1994 г. Этот случай стал первым наблюдавшимся столкновением двух тел Солнечной системы.

Телескоп Hubble наконец-то сфотографировал поверхность Плутона с таким разрешением, что стало возможным говорить о составлении его карты. На снимках, сделанных космической обсерваторией, эксперты различают полярные шапки, яркие перемещающиеся пятна и загадочные линии. Впечатляющим было также открытие у Плутона, в дополнение к уже известному спутнику Харону, еще четырех небольших лун - Никты, Гидры, PIV, PV.

При наблюдениях астероида Веста (4 Vesta) планетологов поразила высокая разрешающая способность и четкая детализация поверхности (конечно, не стоит сравнивать снимки, сделанные полтора десятка лет назад с расстояния более 110 млн. км, с теми, которые получил космический аппарат Dawn в 2011-12 гг., находясь на орбите вокруг Весты). После того, как Hubble в 2006 г. провел исследования объекта 2003 UB313, вначале считавшегося 10-й планетой Солнечной системы, а позже получившего имя Эрида (136199 Eris), это небесное тело было признано слишком маленьким, чтобы «носить звание» планеты. Не подлежит сомнению и важность открытия полярных (авроральных) сияний на планетах-гигантах Юпитере и Сатурне, а также на юпитерианских лунах Ио и Ганимеде.


Важным объектом исследований телескопа Hubble стали планетарные туманности - посмертный этап эволюции звезд типа нашего Солнца. По мере истощения запасов термоядерного горючего они начинают периодически выбрасывать свое вещество в окружающее пространство, переходя в состояние белого карлика - сверхплотного объекта, выделяющего энергию за счет медленного гравитационного сжатия. Сброшенные оболочки, освещаемые излучением звездного остатка, формируют сложные структуры, в которых просматривается динамика процесса испускания вещества.
Ярким примером таких структур могут служить газовые волокна туманности NGC 5189, расположенной в южном созвездии Мухи на расстоянии 1800 световых лет (она имеет неофициальное название «Спираль»). Можно предположить, что туманность была сформирована в процессе взаимодействия двух независимых расширяющихся структур, наклоненных друг к другу. Подобную двойную биполярную структурированность обычно объясняют наличием у «сгоревшей» звезды массивного спутника, который своим притяжением влияет на направление «рек» истекающего газа. Хотя это объяснение весьма правдоподобно, визуально обнаружить такой компаньон в данном случае не удалось.
Яркие золотистые кольца состоят из большого количества радиальных нитей и кометоподобных узлов. Обычно они формируются комбинированным воздействием ионизирующего излучения и звездного ветра.
Фотография была сделана 6 июля 2012 г. Камерой широкого поля (Wide Field Camera 3) через узкополосные фильтры, центрированные на основные линии эмиссии ионизированных атомов серы, водорода и кислорода. Для определения цвета звезды в видимом и ближнем инфракрасном диапазоне использовались широкополосные фильтры.
КОСМИЧЕСКИЕ ТЕЛЕСКОПЫ

Поскольку сервисные миссии к обсерватории Hubble больше невозможны (из-за прекращения полетов американских кораблей многоразового использования), ее технические возможности со временем будут только сокращаться, а оборудование - морально устаревать. NASA гарантирует полноценное функционирование телескопа как минимум до 2015 г. Его предполагаемый «сменщик», названный в честь бывшего директора американского космического ведомства Джеймса Уэбба (James Webb Space Telescope -JWST), будет ориентирован в основном на ближний инфракрасный диапазон. Связано это с тем, что в результате развития технологии адаптивной оптики, компенсирующей влияние неоднородностей атмосферы, наземные обсерватории в скором времени смогут делать снимки небесных объектов с «хаббловским» разрешением, затрачивая на это намного меньше средств и усилий, чем требуется для вывода на орбиту и эксплуатации сравнимого по размерам инструмента.