Как называется самая тонкая часть земли. Из чего состоит Земля — объяснение для детей. Из чего состоит планета Земля


Наш дом

Планета, на которой мы живём, используется нами абсолютно во всех сферах нашей жизнедеятельности: мы строим не ней свои города и жилища; употребляем в пищу плоды растений, растущих на ней; используем в своих целях природные ресурсы, добываемые из её недр. Земля - это источник всех благ, доступных нам, наш родной дом. Но мало кто знает, что собой представляет строение Земли, в чём его особенности и чем оно интересно. Для людей, специально интересующихся данным вопросом, написана эта статья. Кто-то, прочитав её, освежит в памяти уже имеющиеся знания. А кто-то, возможно, узнает то, о чём не имел ни малейшего представления. Но прежде чем перейти к разговору о том, что характеризует внутренние строение Земли, стоит немного сказать и о самой планете.

Вкратце о планете Земля

Земля - третья от Солнца планета (перед ней находится Венера, за ней - Марс). Расстояние от Солнца - около 150 млн. км. Относится к группе планет, называемой "земной группой" (также к ней относят Меркурий, Венеру и Марс). Её масса составляет 5,98*10 27 , а объём равен 1,083*10 27 см³. Скорость движения по орбите равна 29,77 км/с. Полный оборот вокруг Солнца Земля совершает за 365,26 суток, а полный оборот вокруг собственной оси - за 23 часа 56 минут. На основании научных данных учёные сделали вывод, что возраст Земли приблизительно 4,5 миллиарда лет. Планета имеет форму шара, но очертания её иногда меняются вследствие неизбежных внутренних динамических процессов. Химический состав подобен составу остальных планет из земной группы - в нём преобладают кислород, железо, кремний, никель и магний.

Строение Земли

Земля состоит из нескольких составляющих - это ядро, мантия и земная кора. Обо всём понемногу.

Земная кора

Это верхний слой Земли. Именно его активно использует человек. И изучен данный слой лучше всех. В нём находятся залежи горных пород и минералов. Состоит он из трёх слоёв. Первый - осадочный. Представлен более мягкими горными породами, образовавшимися в результате разрушения твёрдых, отложениями остатков растений и животных, осаждениями различных веществ на дне мирового океана. Следующий слой - гранитный. Он образован из застывшей магмы (расплавленного вещества земных глубин, заполняющего трещины в коре) в условиях давления и высоких температур. Также этот слой содержит разные минералы: алюминий, кальций, натрий, калий. Как правило, данный слой отсутствует под океанами. После гранитного слоя идёт базальтовый, состоящий в основном из базальта (горной породы глубинного происхождения). В этом слое больше кальция, магния и железа. Данные три слоя содержат в себе все полезные ископаемые, которые использует человек. Толщина земной коры колеблется от 5 км (под океанами) до 75 км (под материками). Кора Земли составляет примерно 1% от общего её объёма.

Мантия

Находится под корой и окружает ядро. Составляет 83% от общего объёма планеты. Разделяется мантия на верхнюю (на глубине 800-900 км) и нижнюю (на глубине 2900 км) части. Из верхней части образуется магма, о которой мы упоминали выше. Состоит мантия из плотных силикатных пород, в которых содержатся кислород, магний и кремний. Также на основе сейсмологических данных, учёные пришли к заключению, что в основе мантии существует попеременно прерывающийся слой, состоящий из гигантских континентов. А они, в свою очередь, могли сформироваться в результате смешивания пород самой мантии с веществом ядра. Но ещё одним вариантом является то, что эти области могут представлять дно древних океанов. Нот это уже детали. Далее геологическое строение Земли продолжается ядром.

Ядро

Образование ядра объясняют тем, что в ранний исторический период Земли вещества с наибольшей плотностью (железо и никель) осели в центр и образовали ядро. Оно является наиболее плотной частью, представляющей строение Земли. Делится на расплавленное внешнее ядро (толщиной примерно 2200 км) и твёрдое внутреннее (диаметром примерно 2500 км). Составляет 16% от всего объёма Земли и 32% от всей её массы. Его радиус равен 3500 км. То, что происходит внутри ядра, мало поддаётся представлению - здесь температура свыше 3000°С и колоссальное давление.

Конвекция

Тепло, которое было накоплено за время образования Земли, и по сей день выделяется из её глубин по мере того, как охлаждается ядро и распадаются радиоактивные элементы. Не выходит оно на поверхность лишь благодаря тому, что есть мантия, породы которой имеют прекрасную теплоизоляцию. Но это тепло приводит в движение само вещество мантии - сначала раскалённые породы поднимаются вверх от ядра, а затем, охлаждаясь ею, снова возвращаются. Этот процесс называется конвекцией. Её результатом являются извержения вулканов и землетрясения.

Магнитное поле

Расплавленное железо, находящееся во внешнем ядре, обладает циркуляцией, которая создаёт электрические токи, порождающие магнитное поле Земли. Оно распространяется в космические дали и создаёт вокруг Земли магнитную оболочку, которая отражает потоки солнечного ветра (заряженных частиц, выбрасываемых Солнцем) и защищает живые существа от смертельных излучений.

Откуда данные

Вся информация получается с помощью различных геофизических методов. На поверхности Земли сейсмологами (учёными, изучающими колебания Земли) устанавливаются сейсмологические станции, где регистрируются любые колебания земной коры. Наблюдая за активностью сейсмических волн в разных точках Земли, мощнейшие компьютеры воспроизводят картину того, что происходит в глубинах планеты аналогично тому, как рентген ”просвечивает” тело человека.

В заключение

Мы лишь немного поговорили о том, каково строение Земли. На самом деле изучать данный вопрос можно очень долго, т.к. он полон нюансов и особенностей. Для этой цели и существуют сейсмологи. Остальным же достаточно иметь о её строении общую информацию. Но ни в коем случае нельзя забывать о том, что планета Земля - это наш дом, без которого не было бы и нас. И относиться к ней нужно с любовью, уважением и заботой.

Есть внутренние и внешние оболочки, взаимодействующие между собой.

Внутреннее строение Земли

Для изучения внутреннего строения Земли используют бурение сверхглубоких скважин (самая глубокая Кольская – 11 000 м. прошла менее 1/400 земного радиуса). Но большая часть сведений о строении Земли получена с помощью сейсмического метода. На основании данных, полученных этими методами, создана общая модель строения Земли.

В центре планеты расположено земное ядро — (R=3500 км) состоит предположительно из железа с примесью более легких элементов. Существует гипотеза, что ядро состоит из водорода, который под высоким может перейти в металлическое состояние. Внешний слой ядра – жидкое, расплавленное состояние; внутреннее ядро радиусом 1250 км твердое. Температура в центре ядра, видимо, до 5 – 6 тыс. градусов.

Ядро окружено оболочкой – мантией. Мантия имеет толщину до 2900 км, объём – 83 % объема планеты. Она состоит из тяжёлых минералов, богатых магнием и железом. Несмотря на высокую температуру (выше 2000?), большая часть вещества мантии вследствие огромного давления находится в твердом кристаллическом состоянии. Верхняя мантия на глубине от 50 до 200 км имеет подвижный слой, называемый астеносфера (слабая сфера). Она отличается высокой пластичностью, обусловленной мягкостью образующего её вещества. Именно с этим слоем связано и другие важные процессы на Земле. Его толщина – 200 – 250 км. Вещество астеносферы, проникающее в земную кору и изливающееся на поверхность, называется магмой.

Земная кора – твердая слоистая внешняя оболочка Земли мощностью от 5 км под океанами до 70 км под горными сооружениями материков.

  • Континентальную (материковую)
  • Океаническую

Континентальная кора более мощная и более сложная. Она имеет 3 слоя:

  • Осадочный (10-15 км, породы в основном осадочные)
  • Гранитный (5-15 км., породы этого слоя в основном метаморфические, по своим свойствам близки к граниту)
  • Бальзатовый (10-35 км., породы этого слоя – магматические)

Океаническая кора более тяжелая, гранитный слой в ней отсутствует, осадочный сравнительно тонкий, в основном она бальзатовая.

В областях перехода от материка к океану кора имеет переходный характер.

Земная кора и верхняя часть мантии образуют оболочку, которая называется (от греч. litos – камень). Литосфера – твердая оболочка Земли, включающая земную кору и верхний слой мантии, лежащий на горячей астеносфере. Мощность литосферы в среднем 70 – 250 км, из которых 5 – 70 км приходится на земную кору. Литосфера не сплошная оболочка, она разделена гигантскими разломами на . Большинство плит включают в себя как материковую, так и океаническую кору. Выделяют 13 литосферных плит. Но наиболее крупными являются: Американская, Африканская, Индо-Австралийская, Тихоокеанская.

Под воздействием процессов, происходящих в земных недрах, литосфера совершает движения. Литосферные плиты медленно движутся друг относительно друга со скоростью 1 – 6 см в год. Кроме того, постоянно происходят их вертикальные движения. Совокупность горизонтальных и вертикальных движений литосферы, сопровождающихся возникновением разломов и складок земной коры, называются . Они бывают медленными и быстрыми.

Силы, вызывающие расхождение литосферных плит возникают при перемещении вещества мантии. Мощные восходящие потоки этого вещества расталкивают плиты, разрывают земную кору, образуя в ней глубинные разломы. Там, где это вещество поднимается наружу, возникают в литосфере разломы, и плиты начинают раздвигаться. Внедряющаяся по разломам магма, застывая, наращивает края плит. В результате по обе стороны разлома возникают валы, и . Они обнаружены во всех океанах и образуют единую систему, общей протяженностью 60 000 тыс км. Высота хребтов до 3000 м. Наибольшей ширины такой хребет достигает в юго-восточной части , где скорость раздвижения плит 12 – 13 см/год. Он не занимает срединного положения и называется тихоокеанским поднятием. На месте разлома, в осевой части срединно-океанических хребтов, обычно находятся ущелья – рифты. Их ширина от нескольких десятков километров в верхней части до нескольких километров у дна. На дне рифтов располагаются небольшие вулканы и горячие источники. В рифтах из поднимающейся магмы рождается новая океаническая кора. Чем дальше от рифта, тем кора старше.

Вдоль других границ плит наблюдается столкновение литосферных плит. Оно происходит по-разному. При столкновении плиты с океанической корой и плиты с материковой корой первая погружается под вторую. При этом возникают глубоководные желоба, островные дуги, а на суше горы. Если сталкиваются две плиты с материковой корой, то происходит смятие в , вулканизм и образование горных областей (например, – это сложные процессы, возникающие при движении магмы, которая образуется в отдельных очагах и на разных глубинах астеносферы. Очень редко она образуется в земной коре. Различают два основных типа магм – базальтовая (основная) и гранитная (кислая).

Извергаясь на поверхность Земли, магма образует вулканы. Такой магматизм называется эффузивным. Но чаще магма внедряется в земную кору по трещинам. Такой магматизм называется интрузивным.

Земля, так же, как и многие другие планеты, имеет слоистое внутреннее строение. Наша планета состоит из трех основных слоев. Внутренний слой – это ядро, наружный – земная кора, а между ними размещена мантия.

Ядро представляет собой центральную часть Земли и расположено на глубине 3000-6000 км. Радиус ядра составляет 3500 км. По мнению ученых, ядро состоит из двух частей: внешней – вероятно, жидкой, и внутренней - твердой. Температура ядра составляет около 5000 градусов. Современные представления о ядре нашей планеты получены в ходе длительных исследований и анализа полученных данных. Так, доказано, что в ядре планеты содержание железа достигает 35%, что обусловливает его характерные сейсмические свойства. Внешняя часть ядра представлена вращающимися потоками никеля и железа, которые хорошо проводят электрический ток.Происхождение магнитного поля Земли связано именно с этой частью ядра, так как глобальное магнитное поле создается электрическими токами, протекающими в жидком веществе внешнего ядра. Из-за очень высокой температуры внешнее ядро оказывает значительное влияние на соприкасающиеся с ним участки мантии. В некоторых местах возникают громадные тепломассопотоки, направленные к поверхности Земли. Внутреннее ядро Земли твердое, также имеет высокую температуру. Ученые полагают, что такое состояние внутренней части ядра обеспечивается очень высоким давлением в центре Земли, достигающим 3 млн. атмосфер. При увеличении расстояния от поверхности Земли повышается сжатие веществ, при этом многие из которых переходят в металлическое состояние.

Промежуточный слой – мантия – покрывает ядро. Мантия занимает около 80% объема нашей планеты, это самая большая часть Земли. Мантия расположена кверху от ядра, но не достигает поверхности Земли, снаружи она соприкасается с земной корой. В основном, вещество мантии находится в твердом состоянии, кроме верхнего вязкого слоя толщиной примерно 80 км. Это астеносфера, в переводе с греческого языка означает «слабый шар». По мнению ученых, вещество мантии непрерывно движется. При увеличении расстояния от земной коры в сторону ядра происходит переход вещества мантии в более плотное состояние.

Снаружи мантию покрывает земная кора – внешняя прочная оболочка. Ее толщина варьирует от нескольких километров под океанами до нескольких десятков километров в горных массивах. На долю земной коры приходится всего 0,5% общей массы нашей планеты. В состав коры входят оксиды кремния, железа, алюминия, щелочных металлов. Континентальная земная кора делится на три слоя: осадочный, гранитный и базальтовый. Океаническая земная кора состоит из осадочного и базальтового слоев.

Литосферу Земли формирует земная кора вместе с верхним слоем мантии. Литосфера слагается из тектонических литосферных плит, которые как будто «скользят» по астеносфере со скоростью от 20 до 75 мм в год. Двигающиеся друг относительно друга литосферные плиты различны по величине, а кинематику передвижения определяет тектоника плит.

Видео презентация "Внутреннее строение Земли":

Презентация "География как наука"

Похожие материалы:

Структура Земли

Материал из Википедии - свободной энциклопедии

Земля в разрезе от ядра к экзосфере. Левая картинка не в масштабе.

Земля имеет в первом грубом приближении форму шара (фактический радиус Земли равен 6357-6378 км) и состоит из нескольких оболочек. Эти слои могут быть определены либо их химическими или их реологическими свойствами. В центре расположено ядро Земли с радиусом около 1250 км, которое в основном состоит из железа и никеля. Далее идёт жидкая часть ядра Земли (состоящее в основном из железа) с толщиной около 2200 км. Потом 2900 км вязкой мантии , состоящей из силикатов и оксидов , а сверху довольно тонкая, твердая земная кора . Она также состоит из силикатов и оксидов, но обогащена элементами, которые не встречаются в мантийных породах. Научное понимание внутренней структуры Земли основывается на наблюдениях топография и батиметрии , наблюдения горных пород в обнажениях , образцах поднятых на поверхность с больших глубин в результате вулканической активности, анализе сейсмических волн , которые проходят сквозь Землю, измерении гравитации областей Земли, и экспериментах с кристаллическими твердыми телами при давлениях и температурах , характерных для глубоких недр Земли.

    1 Предположения

    2 Структура

    • 2.1 Ядро

      2.2 Мантия

      2.3 Кора

    3 Историческое развитие альтернативных концепций

    6 Дальнейшее чтение

Предположения

Сила, гравитация Земли может быть использована для расчета её массы, а также оценки объема планеты, и её средней плотности. Астрономы также могут рассчитать массу Земли по её орбите и влиянию на близлежащие планетарные тела. Наблюдения скал, водоемов и атмосферы, позволяют оценить массу, объем и плотность горных пород на определенной глубине, так что остальная масса должна находиться в более глубоких слоях.

Структура

Структуру Земли можно классифицировать по двум принципам: по механическим свойствами, такими как реология , или по химическим свойствам. Механически, она может быть разделена на литосферы , астеносферы , мезосферы , внешнее ядро и внутреннее ядро. Химически Землю можно разделить на земную кору , верхнюю мантию , нижнюю мантию, внешнее ядро и внутреннее ядро.

Схематическое изображение внутренней структуры Земли. 1. континентальная кора - 2. океаническая кора - 3. верхняя мантия - 4. нижняя мантия - 5. Внешнее ядро - 6. Внутреннее ядро - А: Поверхность Мохоровичича - B: Разрыв Гутенберга - C: разрыв Леманн-Буллен

Геологические слои Земли находятся на следующих глубинах под поверхностью: :

Глубина

Слой

Километры

Мили

Литосфера (локально колеблется от 5 до 200 км)

Кора (локально колеблется от 5 до 70 км)

Верхняя часть мантии

Астеносфера

Верхняя мезосфера (верхняя мантия)

Нижняя мезосфера (нижняя мантия)

Внешнее ядро

Внутреннее ядро

Слои Земли были определены косвенно с помощью измерения времени распространения преломленных и отраженных сейсмических волн , созданных землетрясениями. Ядро не пропускает поперечные волны, а скорость распространения волн отличается в разных слоях. Изменения в скорости сейсмических волн между различными слоями вызывает их преломление благодаря закону Снелла .

Ядро

Основная статья: Ядро Земли

Средняя плотность Земли 5515 кг /м 3 . Поскольку средняя плотность материала поверхности составляет всего лишь около 3000 кг /м 3 , мы должны заключить, что плотные материалы существуют в ядре Земли. Еще одно доказательство высокой плотности ядра происходит из изучения сейсмологии.

Сейсмические измерения показывают, что ядро делится на две части, твердое внутреннее ядро с радиусом ~ 1220 км [ 2 ] и жидкое внешнее ядро, с радиусом ~ 3400 км .

Мантия

Основная статья: Мантия Земли

Мантия Земли простирается до глубины 2890 км, что делает её самым толстым слоем Земли. Давление в нижней мантии, составляет ~ 140 ГПа (1,4 М атм). Мантия состоит из силикатных пород, богатых железом и магнием по отношению к вышележащей коре.Высокие температуры в мантии делают силикатный материал достаточно пластичным, чтобы могла существовать конвекция вещества в мантии, выходящая на поверхность через разломы в тектонических плитах. Плавление и вязкость вещества зависят от давления и химических изменений в мантии. Вязкость мантии колеблется от 10 21 до 10 24 Pa·s , в зависимости от глубины. Для сравнения, вязкость воды составляет около 10 −3 Pa·s , а песка 10 7 Pa·s .

Кора

Основная статья: Земная кора

Кора колеблется от 5 до 70 км в глубину от поверхности. Самые тонкие части океанической коры, которые лежат в основе океанических бассейнов (5-10 км) и состоят из плотной (мафической (англ. )) железо-магниевой силикатной породы, такой как базальт .

Историческое развитие альтернативных концепций

Основная статья: Полая Земля

Иллюстрация гипотезы Галлея .

В 1692 году Эдмунд Галлей (в статье, напечатанной в Философских трудах Королевского общества в Лондоне), выдвинул идею о Земле, состоящей из полого корпуса около 500 миль толщиной, с двумя внутренними концентрическими оболочками вокруг внутреннего ядра, соответствующего диаметра планет Венеры, Марса и Меркурия, соответственно .

Глава 8 косное вещесво земли

§ 8.1. Форма и строение Земли

Форма Земли

Земля является той ареной, на которой возникают, развиваются и погибают цивилизации, происходит становление единого современного общества. От того, насколько хорошо мы будем понимать устройство нашей планеты, во многом зависит наше будущее. Однако мы знаем о ней не больше (а зачастую и существенно меньше), чем о далеких звездах. Начнем с представлений о форме Земли. В настоящее время никто не отрицает утверждения о том, что наша планета «круглая». Действительно, в первом приближении форма Земли определяется как шаровидная. Такое представление возникло еще в Древней Греции. И только в XVII-XVIII вв. оно стало уточняться. Было выяснено, что Земля сплюснута по оси вращения (разница между осями составляет около 21 км). Предполагается, что Земля формировалась под влиянием совместного действия гравитации и центробежных сил. Равнодействующая этих сил - сила тяжести - выражается в ускорении, которое приобретает каждое тело у поверхности Земли. Уже И. Ньютон теоретически обосновал положение, согласно которому Земля должна быть сжата в направлении оси вращения и принять форму эллипсоида, что было впоследствии подтверждено эмпирически. Позднее было обнаружено, что Земля сжата не только на полюсах, но в небольшой степени и по экватору. Наибольший и наименьший радиусы экватора различаются на 213 м, т.е. Земля является трехосным эллипсоидом. Но представления о Земле как об эллипсоиде также верны лишь в первом приближении. Реальная поверхность Земли еще более сложна. Наиболее близок к современной фигуре Земли геоид - воображаемая уровенная поверхность, по отношению к которой вектор силы тяжести повсеместно направлен перпендикулярно. На площади акватории океанов геоид совпадает с поверхностью воды, находящейся в полном покое. Расхождение между геоидом и эллипсоидом местами достигает ±(100-150) м, что объясняется неравномерным распределением масс разной плотности в теле Земли, влияющим на изменение силы тяжести, следовательно, и на форму геоида. В настоящее время для создания геодезической основы карт и других целей в России используется эллипсоид Красовского со следующими основными параметрами: экваториальный радиус 6378,245 км; полярный радиус 6356,863 км; полярное сжатие 1/298,25; площадь поверхности Земли около 510 млн км2, ее объем 1,083 · 1012 км3. Масса Земли составляет 5,976 · 1027 г.

Внутреннее строение Земли

Отметим, что непосредственному наблюдению доступны только самые верхние (до глубин 15-20 км) горизонты земной коры, выходящие на поверхность или вскрытые рудниками, шахтами и буровыми скважинами. Суждения о составе и физическом состоянии более глубоких оболочек основываются на данных геофизических методов, т.е. имеют предположительный характер. Из этих методов особое значение имеют сейсмический метод, основанный на регистрации скорости распространения в теле Земли волн, вызываемых землетрясениями или искусственными взрывами. В очагах землетрясений возникают так называемые продольные сейсмические волны, которые рассматриваются как реакция среды на изменение объема, и поперечные волны реакция среды на изменение формы, - распространяющиеся только в твердых телах. На основе геофизических наблюдений установлено, что Земля неоднородна и дифференцирована вдоль радиуса. В настоящее время известно несколько моделей строения Земли. Большинство исследователей принимает модель, согласно которой выделяются три главные оболочки Земли, разделенные четко выраженными поверхностями сейсмического раздела, где скорости сейсмических волн резко изменяются (рис. 8.1) :

    земная кора - твердая верхняя оболочка Земли. Ее мощность изменяется от 5-10 км под океанами до 30-40 км в равнинных областях и достигает 50-75 км в горных районах (максимальные значения встречаются под Андами и Гималаями);

    мантия Земли распространяется ниже земной коры до глубины 2900 км от поверхности и подразделяется на две части: верхнюю мантию - до глубины 900-1000 км и нижнюю мантию - от 900-1000 до 2900 км;

3) ядро Земли, где выделяют внешнее ядро, - до глубины около 5120 км и внутреннее ядро - ниже 5120 км. Земная кора отделяется от мантии в большинстве случаев достаточно резкой сейсмической границей - поверхностью Mохоровичича (сокращенно Μ οхо, или М). Сейсмическим методом в верхней мантии выявлен слой относительно менее плотных, как бы «размягченных» горных пород - астеносфера.В этом слое наблюдаются понижение скорости сейсмических волн, особенно поперечных, и повышение электрической проводимости, что свидетельствует о менее вязком, более пластичном состоянии вещества - на 2-3 порядка ниже, чем в покрывающих и подстилающих слоях мантии. Предполагается, что эти свойства связаны с частичным плавлением вещества мантии (1-10%) в результате более быстрого повышения температуры, нежели давления с увеличением глубины. Вязкость астеносферы существенно изменяется как в вертикальном, так и в горизонтальном направлении, изменяется и ее мощность. Астеносфера располагается на различных глубинах: под континентами - от 80-120 до 200-250 км, под океанами - от 50-70 до 300-400 км. Она наиболее четко выражена и приподнята, местами до глубин 20-25 км и менее, под наиболее подвижными зонами земной коры и, напротив, слабо выражена и опущена под наиболее спокойными участками континентов (щитами платформ). Астеносфере принадлежит большая роль в глубинных геологических процессах. Твердый надастеносферный слой мантии вместе с земной корой называется литосферой.

Внешние

Атмосфера Гидросфера Биосфера

Внутренние

1) Кора (Континентальная кора · Океаническая кора ): Осадочный слой Верхняя кора Граница Конрада Нижняя кора Литосфера (Литосферные плиты ) Поверхность Мохоровичича 2) Мантия : Верхняя мантия (Астеносфера ) Сейсмический раздел 660 км Нижняя мантия Граница Гутенберга 3) Ядро : Внешнее ядро Внутреннее ядро

Основные характеристики Земли

Средняя плотность Земли, по гравиметрическим данным, составляет 5,5 г/см. Плотность горных пород, слагающих земную кору, колеблется от 2,4 до 3,0 г/см. Сопоставление этих значений со средней плотностью Земли приводит к предположению, что с глубиной должно наблюдаться увеличение плотности в мантии и ядре Земли. Считается, что в над астеносферной части мантии ниже границы Мохо породы значительно плотнее. При переходе от мантии к ядру происходит скачок плотности до 9,7-10,0 г/см3, затем она повышается и во внутреннем ядре составляет 12,5-13,0 г/см3. Рассчитано, что ускорение силы тяжести изменяется от 9,82 м/с2 у поверхности до максимального значения 10,37 м/с2 в основании нижней мантии (2900 км). В ядре ускорение силы тяжести быстро падает, доходя на глубине около 5000 км до 4,52 м/с2, далее на глубине 6000 км падая до 1,26 м/с2, а в центре - до нуля. Известно, что Земля представляет собой как бы гигантский магнит с силовым полем вокруг. В современную эпоху магнитные полюса Земли расположены вблизи географических полюсов, но не совпадают с ними. В настоящее время происхождение главного магнитного поля Земли чаще всего объясняют с помощью динамотеорической концепции Френкеля-Эльзассера, согласно которой это поле возникает в результате действия системы электрических токов, вызванных сложными конвективными движениями в жидком внешнем ядре при вращении Земли. На общий фон магнитного поля накладывается влияние горных пород, которые содержат ферромагнитные минералы, залегающие в верхней части земной коры, в результате чего на поверхности Земли образуются магнитные аномалии. Остаточная намагниченность горных пород, содержащих ферромагнитные минералы, ориентирована, как магнитное поле Земли, существовавшее в период их образования. Исследования этой намагниченности показали, что магнитное поле Земли неоднократно испытывало инверсии в ходе геологической истории: северный полюс становился южным, а южный - северным. Шкалу магнитных инверсий используют для сопоставления толщ горных пород и определения их возраста. Для понимания процессов, происходящих в глубинах Земли, важным оказался вопрос теплового поля планеты. В настоящее время выделяют два источника тепла Земли - Солнце и недра Земли. Прогревание Солнцем распространяется на глубину, не превышающую 28-30 м. На некоторой глубине от поверхности располагается пояс постоянной температуры, равной среднегодовой температуре данной местности. Так, в Москве на глубине 20 м наблюдается постоянная температура, равная +4,2 °С, а в Париже +11,83 °С на глубине 28 м. Ниже пояса постоянной температуры наблюдениями в шахтах, рудниках, буровых скважинах установлено повышение температуры с глубиной, что обусловлено тепловым потоком, поступающим из недр Земли. Среднее для Земли значение внутреннего теплового потока - около 1,4-1,5 мккал/см2в секунду. Установлено, что тепловой поток зависит от степени подвижности коры и интенсивности эндогенных (внутренних) процессов. В пределах спокойных районов континентов его значение несколько меньше среднего. Существенные колебания теплового потока характерны для гор, на большей части океанического дна тепловой поток почти такой же, как на материковых равнинах, но в пределах так называемых рифтовых долин срединно-океанских хребтов увеличивается иногда в 5-7 раз. Высокие значения теплового потока отмечены во внутренних областях Красного моря. Источники внутренней тепловой энергии Земли еще недостаточно изучены. Но основными считаются: 1) распад радиоактивных элементов (урана, тория, калия и др.); 2) гравитационная дифференциация с перераспределением материала по плотности в мантии и ядре, сопровождающаяся выделением теплоты. Наблюдения в рудниках, шахтах и буровых скважинах свидетельствуют о повышении температуры с глубиной. Для ее характеристики введен геотермический градиент - нарастание температуры в градусах Цельсия на единицу глубины. Его значения различны в разных местах земного шара. Средним считается примерно 30 °С на 1 км, а крайние значения диапазона различаются более чем в 25 раз, что объясняется различной эндогенной активностью земной коры и различной теплопроводностью горных пород. Наибольший геотермический градиент, равный 150 °С на 1 км, отмечен в штате Орегон (США), а наименьший (6 °С на 1 км) - в Южной Африке. В Кольской скважине на глубине 11 км зарегистрирована температура около 200 °С. Наибольшие значения градиента связывают с подвижными зонами океанов и континентов, а наименьшие - с наиболее устойчивыми и древними участками континентальной коры. Изменение температуры с глубиной определено весьма приблизительно по косвенным данным. Для земной коры расчеты температур основываются главным образом на данных о тепловом потоке, теплопроводности горных пород, температуре лав, но для больших глубин такие данные отсутствуют, и состав мантии и ядра точно неизвестен. Предполагается, что ниже астеносферы температура закономерно повышается при значительном уменьшении геотермического градиента. На основе представлений о том, что ядро состоит главным образом из железа, были проведены расчеты его плавления на различных границах с учетом существующего там давления. Получено, что на границе нижней мантии и ядра температура плавления железа должна быть 3700 °С, а на границе внешнего и внутреннего ядра - 4300 °С. Из этого делается вывод, что с физической точки зрения температура в ядре составляет 4000-5000 °С. Для сравнения можно указать, что на поверхности Солнца температура чуть меньше 6000 °С. Коснемся вопроса об агрегатном состоянии вещества Земли. Считается, что вещество литосферы находится в твердом кристаллическом состоянии, так как температура при существующих давлениях здесь не достигает точки плавления. Однако местами и внутри земной коры сейсмологи отмечают наличие отдельных низкоскоростных линз, напоминающих астеносферный слой. По сейсмическим данным, вещество мантии Земли, через которую проходят как продольные, так и поперечные сейсмические волны, находится в эффективно-твердом состоянии. При этом вещество нижней мантии, вероятно, находится в кристаллическом состоянии, поскольку существующее в них давление препятствует плавлению. Только в астеносфере, где скорости сейсмических волн понижены, температура приближается к точке плавления. Предполагается, что вещество в астеносферном слое может быть в аморфном стекловидном состоянии, а часть (менее 10%) даже в расплавленном. Геофизические данные, а также очаги магмы, возникающие на различных уровнях астеносферного слоя, указывают на неоднородность и расслоенность астеносферы. Что касается состояния вещества в ядре Земли, то большинство исследователей считают, что вещество внешнего ядра находится в жидком состоянии, а внутреннее ядро - в твердом, поскольку переход от мантии к ядру сопровождается резким снижением скорости продольных сейсмических волн, а поперечные волны, распространяющиеся только в твердой среде, в него не входят.

Существует пять основных слоев Земли: кора, верхняя мантия, нижняя мантия, жидкое внешнее ядро и твердое внутреннее ядро. Кора - это самый тонкий внешний слой Земли, на котором располагаются континенты. За ним следует мантия - самый толстый слой нашей планеты, который делится на два слоя. Ядро также разделяется на два слоя - жидкое внешнее ядро и твердое сферическое внутреннее ядро. Существует несколько способов создать модель слоев Земли. Самые простые и распространенные варианты - трехмерная модель из ваяльной глины, пластилина либо теста для лепки или плоское изображение на бумаге.

Что вам понадобится

Модель из теста для лепки

  • 2 стакана муки
  • 1 стакан крупной морской соли
  • 4 чайные ложки виннокислого калия
  • 2 столовые ложки растительного масла
  • 2 стакана воды
  • Кастрюля
  • Деревянная ложка
  • Пищевые красители: желтый, оранжевый, красный, коричневый, зеленый и голубой (если у вас нет какого-либо цвета, используйте те, что есть)
  • Леска или зубная нить

Бумажная модель

  • 5 листов плотной бумаги или тонкого картона (коричневый, оранжевый, красный, голубой и белый)
  • Циркуль или трафарет с кругами 5 различных диаметров
  • Клей-карандаш
  • Ножницы
  • Большой лист картона

Модель из пенопласта

  • Большой пенопластовый шар (диаметром 13–18 см)
  • Карандаш
  • Линейка
  • Длинный зазубренный нож
  • Акриловые краски (зеленая, голубая, желтая, красная, оранжевая и коричневая)
  • Кисточка
  • 4 зубочистки
  • Скотч
  • Маленькие полоски бумаги

Шаги

Модель из теста

    Для изготовления трехмерной модели потребуется купить ваяльную глину или пластилин либо приготовить тесто для лепки. В любом случае нужно семь цветов: два оттенка желтого, оранжевый, красный, коричневый, зеленый и голубой. Готовить тесто своими руками рекомендуется под присмотром родителей.

    Приготовьте тесто для лепки. Если вы купили ваяльную глину или пластилин, пропустите этот шаг. Смешайте все ингредиенты (мука, соль, виннокислый калий, масло и вода) до однородной массы, без комков. Затем переложите смесь в кастрюлю и нагревайте на слабом огне, постоянно помешивая. В процессе нагрева тесто загустеет. Когда тесто начнет отставать от стенок кастрюли, снимите кастрюлю с конфорки и дайте остыть до комнатной температуры.

    • Остывшее тесто необходимо замесить в течение 1–2 минут.
    • Данный шаг рекомендуется выполнять под присмотром родителей.
    • Крупные кристаллы соли будут по-прежнему заметны в тесте - это нормально.
  1. Разделите тесто на семь шариков разного размера и добавьте красители. Сначала сделайте два небольших шарика размером с мячик для гольфа. Далее сделайте два шарика среднего размера и три крупных шарика. Используйте несколько капель пищевого красителя для каждого шарика в соответствии со следующим списком. Вымесите каждый кусок теста для равномерного распределения цвета.

    • два маленьких шарика: зеленый и красный;
    • два средних шарика: оранжевый и коричневый;
    • три крупных шарика: два оттенка желтого и голубой.
  2. Заверните красный шарик в оранжевое тесто. Вы будете создавать модель Земли от внутреннего слоя к внешним слоям. Красный шарик будет представлять внутреннее ядро. Оранжевое тесто - это внешнее ядро. Слегка сплющите оранжевый шарик, чтобы получилось обернуть тестом красный шарик.

    • Вся модель должна быть сферической, чтобы походить на форму Земли.
  3. Заверните получившуюся сферу в два желтых слоя. Следующий слой - это мантия, которой соответствует желтое тесто. Мантия является наиболее широким слоем планеты Земля, поэтому заверните внутреннее ядро в два толстых слоя желтого теста разных оттенков.

    • Раскатайте тесто необходимой толщины и оберните вокруг шарика, аккуратно соединив со всех сторон, чтобы получить единый слой.
  4. Далее раскатайте и оберните вокруг модели коричневый слой. Коричневое тесто будет изображать земную кору, самый тонкий слой планеты. Раскатайте коричневое тесто, чтобы получить тонкий слой, а затем оберните вокруг шарика аналогично предшествующим слоям.

  5. Добавьте мировой океан и континенты. Заверните земной шар в тонкий слой голубого теста. Это последний слой нашей модели. Океан и континенты являются частью коры, поэтому их не следует рассматривать как отдельные слои.

    • Наконец, придайте зеленому тесту примерную форму континентов. Прижмите их к океану, расположив так, как на глобусе.
  6. Разрежьте шар пополам зубной нитью. Поместите шар на стол и натяните нить над центральной частью сферы. Представьте на модели воображаемый экватор и держите нить над этим местом. Разрежьте шар нитью пополам.

    • На двух половинках будет виден четкий поперечный разрез слоев Земли.
  7. Обозначьте каждый слой. Сделайте небольшие флажки для каждого слоя. Оберните полоску бумаги вокруг зубочистки и зафиксируйте скотчем. Сделайте пять флажков: кора, верхняя мантия, нижняя мантия, внешнее ядро и внутреннее ядро. Вставьте каждый флажок в соответствующий слой.

    • Теперь у вас есть две половинки Земли, поэтому можно использовать половинку с флажками для демонстрации слоев планеты, а вторую с океаном и континентами - как вид сверху.
  8. Соберите интересные факты для каждого слоя. Найдите сведения о составе и толщине каждого слоя. Укажите информацию о плотности и присутствующих температурах. Сделайте краткий отчет или инфографику, чтобы дополнить трехмерную модель необходимыми пояснениями.

    Бумажная модель

    Модель из пенопласта

    1. Подготовьте необходимые материалы. В данной модели используется сфера из пенопласта в виде Земли, четвертая часть которой вырезана, чтобы можно было рассмотреть внутреннее устройство планеты. Разрез следует выполнять под присмотром родителей.

      • Все материалы и принадлежности можно найти дома или в магазине товаров для творчества.
    2. Прочертите круги вдоль горизонтального и вертикального центра шара из пенопласта. Нужно вырезать примерно четверть пенопластового шара. В этом вам помогут круги, разделяющие шар на горизонтальную и вертикальную половины. Идеальная точность не обязательна, но старайтесь придерживаться центра.

      • Удерживайте линейку в центральной части.
      • Удерживайте карандаш на месте над линейкой.
      • Попросите друга поворачивать шар по горизонтали, пока вы будете держать карандаш и следить за тем, чтобы линия проходила по центру.
      • Прочертив полный круг, повторите процедуру по вертикали.
      • В результате вы получите две линии, которые делят шар на четыре равные части.
    3. Вырежьте четверть шара. Две пересекающиеся линии будут разделять шар на четыре части. Вам необходимо вырезать одну четверть с помощью ножа. Настоятельно рекомендуем выполнять это действие под присмотром родителей.

      • Расположите шар таким образом, чтобы одна из линий была направлена точно вверх.
      • Поместите нож поверх линии и аккуратно разрезайте возвратно-поступательными движениями, пока не достигнете центра шара (горизонтальная линия).
      • Переверните шар так, чтобы теперь вверх была направлена горизонтальная линия.
      • Аккуратно разрезайте, пока не достигнете центра шара.
      • Осторожно пошевелите вырезанную четверть, чтобы она отделилась от пенопластового шара.